Bayesian Parameter Determination of a CT-Test Described by a Viscoplastic-Damage Model Considering the Model Error
Abstract
:1. Introduction
2. Model Problem
3. Gauss-Markov-Kalman Filter Using Functional Approximation
3.1. The Linear Filter
3.2. Sequential Gauss-Markov-Kalman Filter
3.3. Numerical Realization
3.3.1. Sampling
3.3.2. Functional Approximation
4. Numerical Results
CT-Test
5. Discussion and Comparison
6. Summary
- The sequential Gauss-Markov-Kalman filter approach can be applied to update the model parameters by considering the surface displacement as the measurement data. The better identification and better reduction in uncertainties of the parameters is achieved by considering more number of nodes.
- The number of updating can be reduced to reduce the computation time when more information from the large number of nodal displacement is available. The CT-Test with a very fine mesh takes a lot of time to solve the system of PDE, therefore updating is performed only at few certain time steps and these time steps should be chosen smartly in a way as discussed in Section 4. The sequential Gauss-Markov-Kalman filter approach updates the model parameters properly where updatings are done on some specified time steps by considering a large observation data available from the surface strain.
- Considering the model error by taking into account different data model and identification model, the sequential Gauss-Markov-Kalman filter approach can still be employed to identify the model parameters by considering the large number of measurement data determined from the surface displacement of a different data model as the parameters are identified properly. The estimated parameters are very close to the true values as shown in Table 3.
Author Contributions
Funding
Conflicts of Interest
References
- Miller, A. An inelastic constitutive model for monotonic, cyclic, and creep deformation: Part I–equations development and analytical procedures. J. Eng. Mater. Technol. 1976, 98, 97–105. [Google Scholar] [CrossRef]
- Krempl, E.; McMahon, J.J.; Yao, D. Viscoplasticity based on overstress with a differential growth law for the equilibrium stress. J. Mech. Mater. 1986, 5, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, R.K.; Laasanen, M.S.; Toyras, J.; Lappalainen, R.; Helminen, H.J.; Jurvelin, J.S. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J. Biomech. 2003, 36, 1373–1379. [Google Scholar] [CrossRef]
- Aubertin, M.; Gill, D.E.; Ladanyi, B. A unified viscoplastic model for the inelastic flow of alkali halides. J. Mech. Mater. 1991, 11, 63–82. [Google Scholar] [CrossRef]
- Chan, K.S.; Bodner, S.R.; Fossum, A.F.; Munson, D.E. A constitutive model for inelastic flow and damage evolution in solids under triaxial compression. J. Mech. Mater. 1992, 14, 1–14. [Google Scholar] [CrossRef]
- Chaboche, J.L.; Rousselier, G. On the plastic and viscoplastic constitutive equations—Part 1: Rules developed with internal variable concept. J. Press. Vessel Technol. 1983, 105, 153–158. [Google Scholar] [CrossRef]
- Chaboche, J.L.; Rousselier, G. On the plastic and viscoplastic constitutive equations—Part 2: Application of internal variable concepts to the 316 stainless steel. J. Press. Vessel Technol. 1983, 105, 159–164. [Google Scholar] [CrossRef]
- An, D.; Cho, J.; Kim, N.H. Identification of correlated damage parameters under noise and bias using Bayesian inference. Struct. Health Monit. 2011, 11, 293–303. [Google Scholar] [CrossRef]
- Hernandez, W.P.; Borges, F.C.L.; Castello, D.A.; Roitman, N.; Magluta, C. Bayesian inference applied on model calibration of a fractional derivative viscoelastic model. In Proceedings of the XVII International Symposium on Dynamic Problems of Mechanics, Natal, Brazil, 22–27 February 2015. [Google Scholar]
- Mahnken, R. Identification of material parameters for constitutive equations. In Encyclopedia of Computational Mechanics Second Edition, Part 2. Solids and Structures; Wiley: Hoboken, NJ, USA, 2017; pp. 1–21. [Google Scholar]
- Zheng, W.; Yu, Y. Bayesian probabilistic framework for damage identification of steel truss bridges under joint uncertainties. Adv. Civ. Eng. 2013, 2013, 1–13. [Google Scholar] [CrossRef]
- Nichols, J.M.; Moore, E.Z.; Murphy, K.D. Bayesian identification of a cracked plate using a population-based Markov Chain Monte Carlo method. J. Comput. Struct. 2011, 89, 1323–1332. [Google Scholar] [CrossRef]
- Madireddy, S.; Sista, B.; Vemaganti, K. A Bayesian approach to selecting hyperelastic constitutive models of soft tissue. J. Comput. Appl. Math. 2015, 291, 102–122. [Google Scholar] [CrossRef]
- Wang, J.; Zabaras, N. A Bayesian inference approach to the inverse heat conduction problem. Int. J. Heat Mass Transf. 2004, 47, 3927–3941. [Google Scholar] [CrossRef]
- Oh, C.K.; Beck, J.L.; Yamada, M. Bayesian learning using automatic relevance determination prior with an application to earthquake early warning. J. Eng. Mech. 2008, 134, 1013–1020. [Google Scholar] [CrossRef] [Green Version]
- Alvin, K. Finite element model update via Bayesian estimation and minimization of dynamic residuals. Am. Inst. Aeronaut. Astronaut. J. 1997, 135, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Marwala, T.; Sibusiso, S. Finite element model updating using Bayesian framework and modal properties. J. Aircr. 2005, 42, 275–278. [Google Scholar] [CrossRef]
- Daghia, F.; de Miranda, S.; Ubertini, F.; Viola, E. Estimation of elastic constants of thick laminated plates within a Bayesian framework. J. Compos. Struct. 2007, 80, 461–473. [Google Scholar] [CrossRef]
- Abhinav, S.; Manohar, C. Bayesian parameter identification in dynamic state space models using modified measurement equations. Int. J. Non-Linear Mech. 2015, 71, 89–103. [Google Scholar] [CrossRef]
- Gogu, C.; Yin, W.; Haftka, R.; Ifju, P.; Molimard, J.; le Riche, R.; Vautrin, A. Bayesian identification of elastic constants in multi-directional laminate from Moire interferometry displacement fields. J. Exp. Mech. 2013, 53, 635–648. [Google Scholar] [CrossRef] [Green Version]
- Gogu, C.; Haftka, R.; Molimard, J.; Vautrin, A. Introduction to the Bayesian approach applied to elastic constants identification. Am. Inst. Aeronaut. Astronaut. J. 2010, 48, 893–903. [Google Scholar] [CrossRef]
- Koutsourelakis, P.S. A novel Bayesian strategy for the identification of spatially varying material properties and model validation: An application to static elastography. Int. J. Numer. Methods Eng. 2012, 91, 249–268. [Google Scholar] [CrossRef] [Green Version]
- Koutsourelakis, P.S. A multi-resolution, non-parametric, Bayesian framework for identification of spatially-varying model parameters. J. Comput. Phys. 2009, 228, 6184–6211. [Google Scholar] [CrossRef] [Green Version]
- Fitzenz, D.D.; Jalobeanu, A.; Hickman, S.H. Integrating laboratory creep compaction data with numerical fault models: A Bayesian framework. J. Geophys. Res. Solid Earth 2007, 112, B08410. [Google Scholar] [CrossRef]
- Most, T. Identification of the parameters of complex constitutive models: Least squares minimization vs. Bayesian updating. In Reliability and Optimization of Structural Systems; Straub, D., Ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 119–130. [Google Scholar]
- Sarkar, S.; Kosson, D.S.; Mahadevan, S.; Meeussen, J.C.L.; Sloot, H.v.; Arnold, J.R.; Brown, K.G. Bayesian calibration of thermodynamic parameters for geochemical speciation modeling of cementitious materials. J. Cem. Concr. Res. 2012, 42, 889–902. [Google Scholar] [CrossRef]
- Zhang, E.; Chazot, J.D.; Antoni, J.; Hamdi, M. Bayesian characterization of Young’s modulus of viscoelastic materials in laminated structures. J. Sound Vib. 2013, 332, 3654–3666. [Google Scholar] [CrossRef]
- Mehrez, L.; Kassem, E.; Masad, E.; Little, D. Stochastic identification of linear-viscoelastic models of aged and unaged asphalt mixtures. J. Mater. Civ. Eng. 2015, 27, 04014149. [Google Scholar] [CrossRef]
- Miles, P.; Hays, M.; Smith, R.; Oates, W. Bayesian uncertainty analysis of finite deformation viscoelasticity. J. Mech. Mater. 2015, 91, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Pelegri, A.A. A Bayesian approach for characterization of soft tissue viscoelasticity in acoustic radiation force imaging. Int. J. Numer. Methods Biomed. Eng. 2016, 32, E02741. [Google Scholar] [CrossRef]
- Kenz, Z.R.; Banks, H.T.; Smith, R.C. Comparison of frequentist and Bayesian confidence analysis methods on a viscoelastic stenosis model. SIAM/ASA J. Uncertain. Quantif. 2013, 1, 348–369. [Google Scholar] [CrossRef] [Green Version]
- An, D.; Choi, J.; Kim, N.H.; Pattabhiraman, S. Fatigue life prediction based on Bayesian approach to incorporate field data into probability model. J. Struct. Eng. Mech. 2011, 37, 427–442. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Qiu, Z.; Wang, X.; Wu, D. Interval finite element analysis and reliability-based optimization of coupled structural-acoustic system with uncertain parameters. Finite Elem. Anal. Des. 2014, 91, 108–114. [Google Scholar] [CrossRef]
- Hoshi, T.; Kobayashi, Y.; Kawamura, K.; Fujie, M.G. Developing an intraoperative methodology using the finite element method and the extended Kalman filter to identify the material parameters of an organ model. In Proceedings of the 29th Annual International Conference of the IEEE EMBS Cité Internationale, Lyon, France, 23–26 August 2007. [Google Scholar]
- Furukawa, T.; Pan, J.W. Stochastic identification of elastic constants for anisotropic materials. Int. J. Numer. Methods Eng. 2010, 81, 429–452. [Google Scholar] [CrossRef]
- Conte, J.P.; Astroza, R.; Ebrahimian, H. Bayesian methods for nonlinear system identification of civil structures. MATEC Web Conf. 2015, 24, 03002. [Google Scholar] [CrossRef]
- Hendriks, M.A.N. Identification of the Mechanical Behavior of Solid Materials. Ph.D. Dissertation, Department of Mechanical Engineering, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 1991. [Google Scholar]
- Bolzon, G.; Fedele, R.; Maier, G. Parameter identification of a cohesive crack model by Kalman filter. J. Comput. Methods Appl. Mech. Eng. 2002, 191, 2847–2871. [Google Scholar] [CrossRef]
- Mahmoudi, E.; König, M. Reliability-based robust design optimization of rock salt cavern. In Proceedings of the 29th European Safety and Reliability Conference, Hannover, Germany, 22–26 September 2019. [Google Scholar]
- Mahmoudi, E.; Hölter, R.; Zhao, C.; Datcheva, M. System Identification concepts to explore mechanised tunnelling in urban areas. In Proceedings of the Dritte Deutesche Bodenmechaniktagung, Bochum, Germany, February 2019. [Google Scholar]
- Wall, O.; Holst, J. Estimation of parameters in viscoplastic and creep material models. SIAM J. Appl. Math. 2001, 61, 2080–2103. [Google Scholar] [CrossRef]
- Nakamura, T.; Gu, Y. Identification of elastic-plastic anisotropic parameters using instrumented indentation and inverse analysis. J. Mech. Mater. 2007, 39, 340–356. [Google Scholar] [CrossRef]
- Agmell, M.; Ahadi, A.; Stahl, J. Identification of plasticity constants from orthogonal cutting and inverse analysis. J. Mech. Mater. 2014, 77, 43–51. [Google Scholar] [CrossRef]
- Sevieri, G.; Andreini, M.; Falco, A.D.; Matthies, H.G. Concrete gravity dams model parameters updating using static measurements. Eng. Struct. 2019, 196, 109231. [Google Scholar] [CrossRef]
- Sevieri, G.; Falco, A.D. Dynamic structural health monitoring for concrete gravity dams based on the Bayesian inference. J. Civ. Struct. Health Monit. 2020, 10, 235–250. [Google Scholar] [CrossRef] [Green Version]
- Sevieri, G.; Falco, A.D.; Marmo, G. Shedding Light on the Effect of Uncertainties in the Seismic Fragility Analysis of Existing Concrete Dams. Infrastructures 2020, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Marsili, F.; Croce, P.; Friedman, N.; Formichi, P.; Landi, F. Seismic reliability assessment of a concrete water tank based on the Bayesian updating of the finite element model. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 2017, 3, 021004. [Google Scholar] [CrossRef]
- Marsili, F.; Croce, P.; Friedman, N.; Formichi, P.; Landi, F. On Bayesian identification methods for the analysis of existing structures. In Proceedings of the IABSE Congress Stockholm, Challenges in Design and Construction of an Innovative and Sustainable Built Environment, Stockholm, Sweden, 21–23 September 2016; pp. 116–123. [Google Scholar]
- Croce, P.; Landi, F.; Formichi, P. Probabilistic Seismic Assessment of Existing Masonry Buildings. Buildings 2019, 9, 237. [Google Scholar] [CrossRef] [Green Version]
- Croce, P.; Formichi, P.; Landi, F. A Bayesian hierarchical model for climatic loads under climate change. Eccomas Proceedia UNCECOMP 2019, 298–308. [Google Scholar] [CrossRef] [Green Version]
- Croce, P.; Marsili, F.; Klawonn, F.; Formichi, P.; Landi, F. Evaluation of statistical parameters of concrete strength from secondary experimental test data. Constr. Build. Mater. 2018, 163, 343–359. [Google Scholar] [CrossRef]
- Hariri-Ardebili, M.A.; Sudret, B. Polynomial chaos expansion for uncertainty quantification of dam engineering problems. Eng. Struct. 2020, 203, 109631. [Google Scholar] [CrossRef]
- Hariri-Ardebili, M.A.; Heshmati, M.; Boodagh, P.; Salamon, J.W. Probabilistic Identification of Seismic Response Mechanism in a Class of Similar Arch Dams. Infrastructures 2019, 4, 44. [Google Scholar] [CrossRef] [Green Version]
- Saouma, V.E.; Hariri-Ardebili, M.A. Probabilistic Cracking, Aging and Shaking of Concrete Dams. In Proceedings of the 5th International Symposiumon Dam Safety, Istanbul, Turkey, 27–31 October 2018; pp. 44–56. [Google Scholar]
- Pouraminian, M.; Pourbakhshian, S.; Hosseini, M.M. Reliability Analysis of Pole Kheshti Historical Arch Bridge under Service Loads using SFEM. J. Build. Pathol. Rehabil. 2019, 4, 21. [Google Scholar] [CrossRef]
- Pouraminian, M.; Pourbakhshian, S.; Farasangi, E.N.; Fotoukian, R. Probabilistic Safety Evaluation of a Concrete Arch Dam Based on Finite Element Modeling and a Reliability L-R Approach. Civ. Environ. Eng. Rep. 2019, 29, 62–78. [Google Scholar] [CrossRef] [Green Version]
- Pouraminian, M.; Pourbakhshian, S.; Farasangi, E.N. Reliability Assessment and Sensitivity Analysis of Concrete Gravity Dams by Considering Uncertainty in Reservoir Water Levels and Dam Body Materials. Civ. Environ. Eng. Rep. 2020, 30, 1–17. [Google Scholar] [CrossRef]
- Ghannadi, P.; Kourehli, S.S. Model updating and damage detection in multi-story shear frames using salp swarm algorithm. Earthquakes Struct. 2019, 17, 63–73. [Google Scholar]
- Ghannadi, P.; Kourehli, S.S.; Noori, M.; Altabey, W.A. Efficiency of grey wolf optimization algorithm for damage detection of skeletal structures via expanded mode shapes. Adv. Struct. Eng. 2020. [Google Scholar] [CrossRef]
- Gharehbaghi, V.; Nguyen, A.; Farsangi, E.N.; Yang, T.Y. Supervised damage and deterioration detection in building structures using an enhanced autoregressive time-series approach. J. Build. Eng. 2020. [Google Scholar] [CrossRef]
- Bocciarelli, M.; Bolzon, G.; Maier, G. A constitutive model of metal-ceramic functionally graded material behavior: Formulation and parameter identification. J. Comput. Mater. Sci. 2008, 43, 16–26. [Google Scholar] [CrossRef]
- Gu, Y.; Nakamura, T.; Prchlik, L.; Sampath, S.; Wallace, J. Micro-indentation and inverse analysis to characterize elastic-plastic graded materials. J. Mater. Sci. Eng. A 2003, 345, 223–233. [Google Scholar] [CrossRef]
- Corigliano, A.; Mariani, S. Parameter identification of a time-dependent elastic-damage interface model for the simulation of debonding in composites. J. Compos. Sci. Technol. 2001, 61, 191–203. [Google Scholar] [CrossRef]
- Corigliano, A.; Mariani, S. Simulation of damage in composites by means of interface models: Parameter identification. J. Compos. Sci. Technol. 2001, 61, 2299–2315. [Google Scholar] [CrossRef]
- Ebrahimian, H.; Astroza, R.; Conte, J.P.; de Callafon, R.A. Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation. J. Mech. Syst. Signal Process. 2017, 84, 194–222. [Google Scholar] [CrossRef]
- Ebrahimian, H.; Astroza, R.; Conte, J.P. Parametric Identification of Hysteretic Material Constitutive Laws in Nonlinear Finite Element Models Using Extended Kalman Filter; Department of Structural Engineering, University of California: La Jolla, San Diego, CA, USA, 2014. [Google Scholar]
- Ebrahimian, H.; Astroza, R.; Conte, J.P. Extended Kalman filter for material parameter estimation in nonlinear structural finite element models using direct differentiation method. Earthq. Eng. Struct. Dyn. 2015, 44, 1495–1522. [Google Scholar] [CrossRef]
- Astroza, R.; Ebrahimian, H.; Conte, J.P. Material parameter identification in distributed plasticity FE models of frame-type structures using nonlinear stochastic filtering. J. Eng. Mech. 2015, 141, 04014149. [Google Scholar] [CrossRef]
- Yan, A.; de Boe, P.; Golinval, J. Structural damage diagnosis by Kalman model based on stochastic subspace identification. Int. J. Struct. Health Monit. 2004, 3, 103–119. [Google Scholar] [CrossRef]
- Yaghoubi, V.; Marelli, S.; Sudret, B.; Abrahamsson, T. Polynomial chaos expansions for modeling the frequency response functions of stochastic dynamical system. In Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS, Crete, Greece, 5–10 June 2016. [Google Scholar]
- Yaghoubi, V.; Marelli, S.; Sudret, B.; Abrahamsson, T. Sparse polynomial chaos expansions of frequency response functions using stochastic frequency transformation. Probabilistic Eng. Mech. 2017, 48, 39–58. [Google Scholar] [CrossRef] [Green Version]
- Yaghoubi, V.; Silani, M.; Zolfaghari, H.; Jamshidian, M.; Rabczuk, T. Nonlinear interphase effects on plastic hardening of nylon 6/clay nanocomposites: A computational stochastic analysis. J. Compos. Mater. 2019, 54, 753–763. [Google Scholar] [CrossRef]
- Hamdia, K.M.; Silani, M.; Zhuang, X.; He, P.; Rabczuk, T. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. Int. J. Fract. 2017, 206, 215–227. [Google Scholar] [CrossRef]
- Silani, M.; Talebi, H.; Ziaei-Rad, S.; Kerfriden, P.; Bordas, S.; Rabczuk, T. Stochastic modelling of clay/epoxy nanocomposites. Compos. Struct. 2014, 118, 241–249. [Google Scholar] [CrossRef]
- Hamdia, K.M.; Msekh, M.A.; Silani, M.; Vu-Bac, N.; Zhuang, X.; Nguyen-Thoi, T.; Rabczuk, T. Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling. Compos. Struct. 2015, 133, 1177–1190. [Google Scholar] [CrossRef]
- Stanisaukis, E.; Solheim, H.; Mashayekhi, S.; Miles, P.; Oates, W. Modeling, experimental characterization, and uncertainty quantification of auxetic foams: Hyperelastic and fractional viscoelastic mechanics. In Proceedings of the Behavior and Mechanics of Multifunctional Materials IX, California, CA, USA, 27 April–8 May 2020. [Google Scholar]
- Adeli, E.; Rosić, B.V.; Matthies, H.G.; Reinstädler, S.; Dinkler, D. Comparison of Bayesian Methods on Parameter Identification for a Viscoplastic Model with Damage. Metals 2020, 10, 876. [Google Scholar] [CrossRef]
- Matthies, H.G.; Litvinenko, A.; Rosić, B.V.; Zander, E. Bayesian parameter estimation via filtering and functional approximations. Tech. Gaz. 2016, 23, 1–8. [Google Scholar]
- Pajonk, O.; Rosić, B.V.; Litvinenko, A.; Matthies, H.G. A deterministic filter for non-Gaussian Bayesian estimation—Applications to dynamical system estimation with noisy measurements. Physica D Nonlinear Phenom. 2012, 241, 775–788. [Google Scholar] [CrossRef]
- Adeli, E. Viscoplastic-Damage Model Parameter Identification via Bayesian Methods. Ph.D. Thesis, Institut für Wissenschaftliches Rechnen, Technische Universität Braunschweig, Braunschweig, Germany, February 2019. [Google Scholar] [CrossRef]
- Simo, J.C.; Hughes, T.J.R. Computational Inelasticity, 7th ed.; Springer: New York, NY, USA, 1998. [Google Scholar]
- Kowalsky, U.; Meyer, J.; Heinrich, S.; Dinkler, D. A nonlocal damage model for mild steel under inelastic cyclic straining. Comput. Mater. Sci. 2012, 63, 28–34. [Google Scholar] [CrossRef]
- Pirondi, A.; Bonora, N. Modeling ductile damage under fully reversed cycling. Comput. Mater. Sci. 2003, 26, 129–141. [Google Scholar] [CrossRef]
- Hughes, T.; Hulbert, G. Space-time finite element methods for elastodynamics: Formulations and error estimates. Comput. Methods Appl. Mech. Eng. 1988, 66, 339–363. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals, 6th ed.; Elsevier Butterworth-Heinemann: Oxford, UK, 2005; ISBN 978-1-85617-633-0. [Google Scholar]
- Luenberger, D.G. Optimization by Vector Space Methods; Wiley: Chichester, UK, 1969. [Google Scholar]
- Grewal, M.S.; Andrews, A.P. Kalman Filtering: Theory and Practice Using MATLAB; Wiley: Chichester, UK, 2008. [Google Scholar]
- McGrayne, S.B. The Theory that Would Not Die; Yale University Press: New Haven, CT, USA, 2011. [Google Scholar]
- Evensen, G. Data Assimilation–the Ensemble Kalman Filter; Springer: Berlin, Germany, 2009. [Google Scholar]
- Pajonk, O. Stochastic Spectral Methods for Linear Bayesian Inference. Ph.D. Dissertation, Institut für Wissenschaftliches Rechnen, Technische Universität Braunschweig, Braunschweig, Germany, February 2012. [Google Scholar]
- Matthies, H.G. Stochastic finite elements: Computational Approaches to Stochastic Partial Differential Equations. J. Appl. Math. Mech. 2008, 88, 849–873. [Google Scholar] [CrossRef]
- Xiu, D. Numerical Methods for Stochastic Computations: A Spectral Method Approach; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Wiener, N. The homogeneous chaos. Am. J. Math. 1938, 60, 897–936. [Google Scholar] [CrossRef]
- Ghanem, R.; Spanos, P.D. Stochastic Finite Elements—A Spectral Approach; Springer: Berlin, Germany, 1991. [Google Scholar]
- Adeli, E.; Rosić, B.V.; Matthies, H.G.; Reinstädler, S. Bayesian parameter identification in plasticity. In Proceedings of the XIV International Conference on Computational Plasticity: Fundamentals and Applications COMPLAS XIV, Barcelona, Spain, 5–7 September 2017. [Google Scholar]
- Adeli, E.; Rosić, B.V.; Matthies, H.G.; Reinstädler, S. Effect of Load Path on Parameter Identification for Plasticity Models using Bayesian Methods. In Lecture Notes in Computational Science and Engineering; Nature Springer: Berlin, Germany, 2018; Available online: http://arxiv.org/abs/1906.07246 (accessed on 17 June 2019).
- Adeli, E.; Matthies, H.G. Parameter Identification in Viscoplasticity using Transitional Markov Chain Monte Carlo Method. arXiv, 2019; arXiv:1906.10647. [Google Scholar]
- Bower, A.F. Applied Mechanics of Solids; CRC Press: Boca Raton, FL, USA, January 2009. [Google Scholar]
Elastic strains |
with |
Viscoplastic strains |
Isotropic and kinematic hardening |
Local damage |
Initial conditions |
, , , and |
Parameters and their units |
G [N/mm], [N/mm], (elastic strains) |
[N/mm], k [N/mm], n , (viscoplastic strains) |
, [N/mm], , [N/mm], (hardening) |
, , , , (local damage) |
G | n | k | |||||||
266 | 1 | 100 | |||||||
150 | 5 | 15 |
Parameters | ||||
---|---|---|---|---|
G | ||||
266 | ||||
298.6 | 298.57 | 0.51 | ||
100 | 100.0 | 1.19 | ||
4.5 | 4.46 | 0.21 | ||
5 | 5.04 | 0.20 | ||
−11 | −10.97 | 0.25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeli, E.; Rosić, B.; Matthies, H.G.; Reinstädler, S.; Dinkler, D. Bayesian Parameter Determination of a CT-Test Described by a Viscoplastic-Damage Model Considering the Model Error. Metals 2020, 10, 1141. https://doi.org/10.3390/met10091141
Adeli E, Rosić B, Matthies HG, Reinstädler S, Dinkler D. Bayesian Parameter Determination of a CT-Test Described by a Viscoplastic-Damage Model Considering the Model Error. Metals. 2020; 10(9):1141. https://doi.org/10.3390/met10091141
Chicago/Turabian StyleAdeli, Ehsan, Bojana Rosić, Hermann G. Matthies, Sven Reinstädler, and Dieter Dinkler. 2020. "Bayesian Parameter Determination of a CT-Test Described by a Viscoplastic-Damage Model Considering the Model Error" Metals 10, no. 9: 1141. https://doi.org/10.3390/met10091141
APA StyleAdeli, E., Rosić, B., Matthies, H. G., Reinstädler, S., & Dinkler, D. (2020). Bayesian Parameter Determination of a CT-Test Described by a Viscoplastic-Damage Model Considering the Model Error. Metals, 10(9), 1141. https://doi.org/10.3390/met10091141