An Overview of High Yield Strength Twinning-Induced Plasticity Steels
Abstract
:1. Introduction
2. Precipitation Strengthening by Nanoscale Precipitates
3. Solid Solution Strengthening
4. Effect of Thermomechanical Processing on Yield Strength
5. Novel Processes to Improve the Yield Strength
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Cooman, B.C.; Estrin, Y.; Kim, S.K. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018, 142, 283–362. [Google Scholar] [CrossRef]
- Bouaziz, O.; Allain, S.; Scott, C.; Cugy, P.; Barbier, D. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr. Opin. Solid State Mater. Sci. 2011, 15, 141–168. [Google Scholar] [CrossRef]
- Kim, J.-K.; De Cooman, B.C. Stacking fault energy and deformation mechanisms in Fe-xMn-0.6C-yAl TWIP steel. Mater. Sci. Eng. A 2016, 676, 216–231. [Google Scholar] [CrossRef]
- Bambach, M.; Conrads, L.; Daamen, M.; Güvenç, O.; Hirt, G. Enhancing the crashworthiness of high-manganese steel by strain-hardening engineering, and tailored folding by local heat-treatment. Mater. Des. 2016, 110, 157–168. [Google Scholar] [CrossRef]
- Kwon, Y.; Zargaran, A.; Ryu, J.H.; Kim, N.J. Effect of annealing conditions on the microstructure and tensile properties of 0.5 V containing Fe-16Mn-0.8 C-0.5 Si steel. Scr. Mater. 2019, 172, 125–129. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Y.; Li, W.; Khedr, M.; Liu, H.; Jin, X. Hierarchical microstructure design of a bimodal grained twinning-induced plasticity steel with excellent cryogenic mechanical properties. Acta Mater. 2018, 158, 79–94. [Google Scholar] [CrossRef]
- Kalsar, R.; Suwas, S. A novel way to enhance the strength of twinning induced plasticity (TWIP) steels. Scr. Mater. 2018, 154, 207–211. [Google Scholar] [CrossRef]
- Hansen, N. Hall–Petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Gladman, T. Precipitation hardening in metals. Mater. Sci. Technol. 1999, 15, 30–36. [Google Scholar] [CrossRef]
- Labusch, R. A statistical theory of solid solution hardening. Phys. Status Solidi 1970, 41, 659–669. [Google Scholar] [CrossRef]
- Hull, D.; Bacon, D.J. Introduction to Dislocations; Butterworth-Heinemann: Oxford, UK, 2001. [Google Scholar]
- Meyers, M.A.; Mishra, A.; Benson, D.J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 51, 427–556. [Google Scholar] [CrossRef]
- Brasche, F.; Wang, J.; Timokhina, I.; Haase, C.; Lapovok, R.; Molodov, D.A. Mechanical twinning and texture evolution during asymmetric warm rolling of a high manganese steel. Mater. Sci. Eng. A 2019, 764, 138183. [Google Scholar] [CrossRef]
- Haase, C.; Ingendahl, T.; Güvenç, O.; Bambach, M.; Bleck, W.; Molodov, D.A.; Barrales-Mora, L.A. On the applicability of recovery-annealed twinning-induced plasticity steels: Potential and limitations. Mater. Sci. Eng. A 2016, 649, 74–84. [Google Scholar] [CrossRef]
- Wu, H.; Fan, G. An overview of tailoring strain delocalization for strength-ductility synergy. Prog. Mater. Sci. 2020, 100675. [Google Scholar] [CrossRef]
- Hamada, A.; Järvenpää, A.; Honkanen, M.; Jaskari, M.; Porter, D.; Karjalainen, L. Effects of cyclic pre-straining on mechanical properties of an austenitic microalloyed high-Mn twinning-induced plasticity steel. Procedia Eng. 2014, 74, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, W.; Li, S.; Min, N.; Jiang, L.; Zhou, Q.; Jin, X. Ensuring the strength and ductility synergy in an austenitic stainless steel: Single-or multi-phase hetero-structures design. Scr. Mater. 2020, 193, 81–85. [Google Scholar] [CrossRef]
- Kim, J.G.; Moon, J.H.; Amanov, A.; Kim, H.S. Strength and ductility enhancement in the gradient structured twinning-induced plasticity steel by ultrasonic nanocrystalline surface modification. Mater. Sci. Eng. A 2019, 739, 105–108. [Google Scholar] [CrossRef]
- Scott, C.; Remy, B.; Collet, J.-L.; Cael, A.; Bao, C.; Danoix, F.; Malard, B.; Curfs, C. Precipitation strengthening in high manganese austenitic TWIP steels. Int. J. Mater. Res. 2011, 102, 538–549. [Google Scholar] [CrossRef]
- Yen, H.-W.; Huang, M.; Scott, C.; Yang, J.-R. Interactions between deformation-induced defects and carbides in a vanadium-containing TWIP steel. Scr. Mater. 2012, 66, 1018–1023. [Google Scholar] [CrossRef]
- Gwon, H.; Kim, J.-K.; Shin, S.; Cho, L.; De Cooman, B.C. The effect of vanadium micro-alloying on the microstructure and the tensile behavior of TWIP steel. Mater. Sci. Eng. A 2017, 696, 416–428. [Google Scholar] [CrossRef]
- Kwon, E.P.; Kim, D.Y.; Park, H.K. Deformation twinning in Nb-microalloyed Fe-Mn-C-Al twinning-induced plasticity steel. J. Mater. Eng. Perform. 2017, 26, 4500–4507. [Google Scholar] [CrossRef]
- Kang, S.; Jung, J.-G.; Lee, Y.-K. Effects of niobium on mechanical twinning and tensile properties of a high Mn twinning-induced plasticity steel. Mater. Trans. 2012, 53, 2187–2190. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Feng, Y.; Song, S.; Liu, Q.; Bai, Q.; Wu, G.; Lv, N.; Ren, F. Influences of Nb-microalloying on microstructure and mechanical properties of Fe–25Mn–3Si–3Al TWIP steel. Mater. Des. 2015, 84, 238–244. [Google Scholar] [CrossRef]
- Gwon, H.; Kim, J.-K.; Jian, B.; Mohrbacher, H.; Song, T.; Kim, S.-K.; De Cooman, B.C. Partially-recrystallized, Nb-alloyed TWIP steels with a superior strength-ductility balance. Mater. Sci. Eng. A 2018, 711, 130–139. [Google Scholar] [CrossRef]
- Nes, E.; Ryum, N.; Hunderi, O. On the Zener drag. Acta Metall. 1985, 33, 11–22. [Google Scholar] [CrossRef]
- Bouaziz, O.; Zurob, H.; Chehab, B.; Embury, J.; Allain, S.; Huang, M. Effect of chemical composition on work hardening of Fe-Mn-C TWIP steels. Mater. Sci. Technol. 2011, 27, 707–709. [Google Scholar] [CrossRef]
- Lee, S.-J.; Han, J.; Lee, S.; Kang, S.-H.; Lee, S.-M.; Lee, Y.-K. Design for Fe-high Mn alloy with an improved combination of strength and ductility. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Sun, X.; Song, C.; Chen, H.; Han, W.; Pan, F. Enhancement of yield strength by chromium/nitrogen alloying in high-manganese cryogenic steel. Mater. Sci. Eng. A 2017, 698, 110–116. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Lee, S.-J.; De Cooman, B.C. Effect of nitrogen on the critical strain for dynamic strain aging in high-manganese twinning-induced plasticity steel. Scr. Mater. 2011, 65, 528–531. [Google Scholar] [CrossRef]
- Jung, I.-C.; De Cooman, B.C. Temperature dependence of the flow stress of Fe-18Mn-0.6 C-xAl twinning-induced plasticity steel. Acta Mater. 2013, 61, 6724–6735. [Google Scholar] [CrossRef]
- Jin, J.-E.; Lee, Y.-K. Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel. Acta Mater. 2012, 60, 1680–1688. [Google Scholar] [CrossRef]
- Li, D.; Feng, Y.; Song, S.; Liu, Q.; Bai, Q.; Ren, F.; Shangguan, F. Influences of silicon on the work hardening behavior and hot deformation behavior of Fe—25 wt% Mn-(Si, Al) TWIP steel. J. Alloy. Compd. 2015, 618, 768–775. [Google Scholar] [CrossRef]
- Lee, S.-M.; Lee, S.-J.; Lee, S.; Nam, J.-H.; Lee, Y.-K. Tensile properties and deformation mode of Si-added Fe-18Mn-0.6 C steels. Acta Mater. 2018, 144, 738–747. [Google Scholar] [CrossRef]
- Jeong, K.; Jin, J.-E.; Jung, Y.-S.; Kang, S.; Lee, Y.-K. The effects of Si on the mechanical twinning and strain hardening of Fe-18Mn-0.6 C twinning-induced plasticity steel. Acta Mater. 2013, 61, 3399–3410. [Google Scholar] [CrossRef]
- Rawers, J.; Grujicic, M. Effects of metal composition and temperature on the yield strength of nitrogen strengthened stainless steels. Mater. Sci. Eng. A 1996, 207, 188–194. [Google Scholar] [CrossRef]
- Rawers, J.; Bennett, J.; Doan, R.; Siple, J. Nitrogen solubility and nitride formation in Fe Cr Ni alloys. Acta Metall. Mater. 1992, 40, 1195–1199. [Google Scholar] [CrossRef]
- Tian, Y.; Bai, Y.; Zhao, L.; Gao, S.; Yang, H.; Shibata, A.; Zhang, Z.; Tsuji, N. A novel ultrafine-grained Fe22Mn0. 6C TWIP steel with superior strength and ductility. Mater. Charact. 2017, 126, 74–80. [Google Scholar] [CrossRef]
- Haupt, M.; Müller, M.; Haase, C.; Sevsek, S.; Brasche, F.; Schwedt, A.; Hirt, G. The Influence of Warm Rolling on Microstructure and Deformation Behavior of High Manganese Steels. Metals 2019, 9, 797. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Chen, C.; Chen, Y.; Wang, X. The simultaneous improvement of strength and plasticity of a novel alloying steel by precipitation recovery annealing. Mater. Lett. 2020, 270, 127710. [Google Scholar] [CrossRef]
- Xiong, T.; Zheng, S.; Zhou, Y.; Pang, J.; Jin, Q.; Ge, H.; Zheng, X.; Yang, L.; Beyerlein, I.; Ma, X. Enhancing strength and thermal stability of TWIP steels with a heterogeneous structure. Mater. Sci. Eng. A 2018, 720, 231–237. [Google Scholar] [CrossRef]
- Yin, F.; Xia, H.; Feng, J.; Cai, M.; Zhang, X.; Wang, G.; Sawaguchi, T. Mechanical properties of an Fe-30Mn-4Si-2Al alloy after rolling at different temperatures ranging from 298 to 1073 K. Mater. Sci. Eng. A 2018, 725, 127–137. [Google Scholar] [CrossRef]
- Zhou, P.; Liang, Z.; Liu, R.; Huang, M. Evolution of dislocations and twins in a strong and ductile nanotwinned steel. Acta Mater. 2016, 111, 96–107. [Google Scholar] [CrossRef]
- Berrenberg, F.; Haase, C.; Barrales-Mora, L.A.; Molodov, D.A. Enhancement of the strength-ductility combination of twinning-induced/transformation-induced plasticity steels by reversion annealing. Mater. Sci. Eng. A 2017, 681, 56–64. [Google Scholar] [CrossRef]
- Brasche, F.; Haase, C.; Barrales-Mora, L.A.; Molodov, D.A. Comparative Study of the Influence of Reversion-and Recovery-Annealing on the Mechanical Behavior of High-Manganese Steels with Varying Stacking Fault Energy. Steel Res. Int. 2018, 89, 1700377. [Google Scholar] [CrossRef]
- Tewary, N.; Ghosh, S.; Chakrabarti, D.; Chatterjee, S. Deformation behaviour of a low carbon high Mn TWIP/TRIP steel. Mater. Sci. Technol. 2019, 35, 1483–1496. [Google Scholar] [CrossRef]
- Vercammen, S.; Blanpain, B.; De Cooman, B.C.; Wollants, P. Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP-steel: The importance of deformation twinning. Acta Mater. 2004, 52, 2005–2012. [Google Scholar] [CrossRef]
- Shen, Y.; Qiu, C.; Wang, L.; Sun, X.; Zhao, X.; Zuo, L. Effects of cold rolling on microstructure and mechanical properties of Fe–30Mn-3Si-4Al-0.093 C TWIP steel. Mater. Sci. Eng. A 2013, 561, 329–337. [Google Scholar] [CrossRef]
- Yanushkevich, Z.; Belyakov, A.; Kaibyshev, R.; Haase, C.; Molodov, D. Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel. Mater. Charact. 2016, 112, 180–187. [Google Scholar] [CrossRef]
- Wesselmecking, S.; Song, W.; Ma, Y.; Roesler, T.; Hofmann, H.; Bleck, W. Strain Aging Behavior of an Austenitic High-Mn Steel. Steel Res. Int. 2018, 89, 1700515. [Google Scholar] [CrossRef]
- Kang, J.-H.; Ingendahl, T.; von Appen, J.; Dronskowski, R.; Bleck, W. Impact of short-range ordering on yield strength of high manganese austenitic steels. Mater. Sci. Eng. A 2014, 614, 122–128. [Google Scholar] [CrossRef]
- Von Appen, J.; Dronskowski, R. Carbon-Induced Ordering in Manganese-Rich Austenite—A Density-Functional Total-Energy and Chemical-Bonding Study. Steel Res. Int. 2011, 82, 101–107. [Google Scholar] [CrossRef]
- Latanision, R.; Ruff, A. The temperature dependence of stacking fault energy in Fe-Cr-Ni alloys. Metall. Trans. 1971, 2, 505–509. [Google Scholar] [CrossRef]
- Dong, Y.; Sun, Z.; Xia, H.; Feng, J.; Du, J.; Fang, W.; Liu, B.; Wang, G.; Li, L.; Zhang, X. The influence of warm rolling reduction on microstructure evolution, tensile deformation mechanism and mechanical properties of an Fe-30Mn-4Si-2Al TRIP/TWIP steel. Metals 2018, 8, 742. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Ding, Q.; Zhong, Y.; Zou, J.; Wu, J.; Chiu, Y.-L.; Li, J.; Zhang, Z.; Yu, Q.; Shen, Z. Dislocation network in additive manufactured steel breaks strength–ductility trade-off. Mater. Today 2018, 21, 354–361. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.M.; Voisin, T.; McKeown, J.T.; Ye, J.; Calta, N.P.; Li, Z.; Zeng, Z.; Zhang, Y.; Chen, W.; Roehling, T.T. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 2018, 17, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Sato, A.; Chishima, E.; Soma, K.; Mori, T. Shape memory effect in γ⇄ϵ transformation in Fe-30Mn-1Si alloy single crystals. Acta Metall. 1982, 30, 1177–1183. [Google Scholar] [CrossRef]
- Olson, G.; Cohen, M. A mechanism for the strain-induced nucleation of martensitic transformations. J. Less Common Met. 1972, 28, 107–118. [Google Scholar] [CrossRef]
- Kim, J.-K.; De Cooman, B.C. Observation of dislocations with a Burgers vector containing a ⟨c⟩ component in martensitic hcp ε Fe-17%Mn. Scr. Mater. 2017, 128, 78–82. [Google Scholar] [CrossRef]
- Li, X.; Lu, L.; Li, J.; Zhang, X.; Gao, H. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nat. Rev. Mater. 2020, 5, 706–723. [Google Scholar] [CrossRef]
- Ma, X.; Huang, C.; Moering, J.; Ruppert, M.; Höppel, H.W.; Göken, M.; Narayan, J.; Zhu, Y. Mechanical properties of copper/bronze laminates: Role of interfaces. Acta Mater. 2016, 116, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Haase, C.; Kremer, O.; Hu, W.; Ingendahl, T.; Lapovok, R.; Molodov, D.A. Equal-channel angular pressing and annealing of a twinning-induced plasticity steel: Microstructure, texture, and mechanical properties. Acta Mater. 2016, 107, 239–253. [Google Scholar] [CrossRef]
- Wang, L.; Benito, J.; Calvo, J.; Cabrera, J. Equal channel angular pressing of a TWIP steel: Microstructure and mechanical response. J. Mater. Sci. 2017, 52, 6291–6309. [Google Scholar] [CrossRef] [Green Version]
Composition of Materials (wt.%) | Precipitation Condition | Precipitate Type | Precipitate Size (nm) | Volume Fraction of Precipitate (%) | Grain Size (μm) | ΔYS (MPa) | Reference |
---|---|---|---|---|---|---|---|
Fe-21.6Mn-0.63C-0.87V | CR + Annealing (850 °C, 60 s) | V4C3 | 13 ± 7.7 | 0.541 | 1.2 | 200 | Yen et al., 2012 [20] |
Fe-17Mn-0.45-1.5Al-1Si-0.3V | HR | VC | 8 | 0.05 | 5.8 | 128 | Gwon et al., 2017 [21] |
Fe-16Mn-0.8C-0.5Si-0.5Si-0.5V | CR + Annealing (850 °C, 60 s) | VC/Fe3C | 31.91 | 0.811 | 1.6 | 140 | Kwon et al., 2019 [5] |
Fe-22Mn-0.6C-0.1Ti | CR + Annealing (740 °C, 120 s) | TiC | 3.8 | 0.0341 | 1.6 | 138 | Scott et al., 2011 [19] |
Fe-17Mn-0.9C-1.1V | CR + Annealing (825 °C, 120 s) | V(C, N) | 6.2 | 0.74 | 1.6 | 247 | |
Fe-22Mn-0.6C-0.21V | CR + Annealing (800 °C, 180 s) | V(C, N) | 7 | 0.19 | 1.9 | 137 | |
Fe-18Mn-0.6C-0.31Nb | CR + Annealing (750 °C, 120 s) | NbC | - | 0.347 | 2.3 | 58 | |
Fe-18Mn-0.6C-0.31Nb | CR + Annealing (800 °C, 180 s) | NbC | 72 | 0.322 | 2.5 | 15 | |
Fe-18Mn-0.6C-2Al-0.05Nb | HR | NbC | a few tens of nanometers | - | 11 | 448 | Kwon et al., 2017 [22] |
Fe-18Mn-0.6C-1.5Al-0.1Nb | HR | NbC | - | - | - | 278 | Kang et al., 2012 [23] |
Fe-25Mn-0.1C-3Si-3Al-0.35Nb | CR + Annealing (1000/800 °C, 180 s) | NbC | - | - | - | 125 | Li et al., 2015 [24] |
Fe-17Mn-0.6C-1.5Al-0.05Nb | CR + Annealing (650 °C, 100 s) | NbC | - | - | 1~5 | 140 | Gwon et al., 2018 [25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Kim, J.-K. An Overview of High Yield Strength Twinning-Induced Plasticity Steels. Metals 2021, 11, 124. https://doi.org/10.3390/met11010124
Yang G, Kim J-K. An Overview of High Yield Strength Twinning-Induced Plasticity Steels. Metals. 2021; 11(1):124. https://doi.org/10.3390/met11010124
Chicago/Turabian StyleYang, Guanghui, and Jin-Kyung Kim. 2021. "An Overview of High Yield Strength Twinning-Induced Plasticity Steels" Metals 11, no. 1: 124. https://doi.org/10.3390/met11010124
APA StyleYang, G., & Kim, J. -K. (2021). An Overview of High Yield Strength Twinning-Induced Plasticity Steels. Metals, 11(1), 124. https://doi.org/10.3390/met11010124