Advanced Structural Materials for Gas-Cooled Fast Reactors—A Review
Abstract
:1. Introduction
2. Gas-Cooled Fast Reactor and ALLEGRO
2.1. The US GFR and Space Program
2.2. European GFR Program
2.3. ALLEGRO Reactor and Materials
- GFR refractory fuels (UPuC, SiCf/SiC cladding), and structural materials for a core that can withstand both high temperatures and high neutron fluxes,
- Helium-related technologies (components, instrumentation, purification)
- Safety technical issues and corresponding safety approach framework.
2.3.1. Reactor Vessel
2.3.2. High-Temperature Components
- Thermal creep in multiple product forms, such as thin-walled tubing, thin sheet, thick plate, and rod or bar,
- Fatigue, creep-fatigue resistance, and creep crack growth resistance,
- Resistance to irradiation effects such as creep, swelling, and embrittlement,
- Resistance to environmental degradation from helium impurities: fuel, fission products, transmuted elements, and thermal aging, and
- Good fabricability, welding, and post-weld thermal annealing, dissimilar metal joining.
2.4. GFR-Summary
3. The Characterization and Testing of SiCf/SiC
4. High Entropy Alloys for Nuclear Application
4.1. Radiation Damage
4.2. High Entropy Alloys
4.3. Radiation Damage in High Entropy Alloys
4.4. Our Investigations of Radiation Damage in Refractory Metal High Entropy Alloys
4.4.1. Selection of Refractory Metal Alloys
4.4.2. Experimental Details
4.4.3. Results
4.4.4. Discussion
5. Conclusions
- Ni-based superalloys are considered to be candidate structural materials for GFR. Promising solid solution strengthened Ni-based super-alloys include 230, 617, and 800H alloys, in which all are high Cr- Ni-based alloys with varying additions and exhibit good strength at high temperatures. Nevertheless, there are several issues connected with Ni superalloys, which have to be solved, such as the corrosion/oxidation/erosion in impure helium.
- SiCf/SiC composites represent novel materials currently considered for the use in GFR core components, especially as a material for cladding and control rods of the GFR. As shown in the present work, SiCf/SiC composites exhibit very good high-temperature corrosion resistance. However, to use SiCf/SiC as a material for GFR components, it is necessary to have well-established testing standards, material codes, and also the joining technology and enough in-pile and out-of-pile data.
- HEAs represent a new class of materials with excellent mechanical properties and high oxidation resistance at elevated temperatures. Moreover, recent investigations revealed that HEAs exhibit very good resistance against radiation damage. Due to these reasons, HEAs are currently intensively studied as potential structural materials for GFR. The main advantages of HEAs can be summarized in the following points.
- -
- Lattice distortions being a characteristic feature of HEA increase the displacement threshold energy of PKAs. As a consequence, the formation energy of Frenkel pairs is increased in HEAs, which improves their radiation resistance.
- -
- The mobility of point defects in HEAs is significantly reduced by trapping of vacancies and interstitials in outward and inward local distortions of the lattice. As a consequence, the formation of voids and swelling are suppressed.
- -
- Radiation-induced solute segregation is suppressed in HEAs as well due to reduced mobility of radiation-induced vacancies.
- -
- A huge number of composition variants provides plenty of room for optimization of HEA compositions in order to achieve excellent resistance against the radiation damage as well as the high strength, good mechanical stability, and corrosion resistance.
- -
- Unique properties of HEAs are closely related to lattice distortions of which the magnitude can be tuned by varying the composition. Fundamental studies relating the magnitude of lattice distortions and radiation resistance are, therefore, crucial for understanding the mechanism of radiation damage in HEAs and for the development of new HEAs optimized for applications in nuclear reactors.
Author Contributions
Funding
Conflicts of Interest
References
- World Nuclear Performance Report 2019. Contify Energy News, October 2019.
- Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Nuclear_energy_statistics (accessed on 19 November 2020).
- Hangbok, C.; Myunghee, C.; Ryan, H. Benchmarking DRAGON/PARCS Against KRITZ and FFTF Measurements. Nucl. Technol. 2019, 205, 486–505. [Google Scholar]
- Donne, E.D.; Wirtz, K. European GCFR Program Plans (KFK—1663); Gesellschaft für Kernforschung mbH: Darmstadt, Germany, 1972. [Google Scholar]
- Van Rooijen, W.F.G. Gas-Cooled Fast Reactor: A Historical Overview and Future Outlook; Science and Technology of Nuclear Installations; Hindawi Publishing Corporation: London, UK, 2009; Volume 2009, p. 965757. [Google Scholar]
- Melese-d’Hospital, G.; Simon, R.H. Status of gas-cooled fast breeder reactor programs. Nucl. Eng. Des. 1977, 40, 5–12. [Google Scholar] [CrossRef]
- Kalivodová, J.; Berka, J.; Dámer, J.; Víden, I.; Burda, J.; Zychová, M. Corrosion behaviour of metallic materials in the experimental helium loop (HTHL-1). In Proceedings of the HTR 2014, Weihai, China, 27–31 October 2014. [Google Scholar]
- El-Genk, M.S. Deployment history and design considerations for space reactor power systems. Acta Astronaut. 2009, 64, 833–849. [Google Scholar] [CrossRef]
- Ashcroft, J.; Eshelman, C. Summary of NR Program Prometheus Efforts. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2007; Volume 880. [Google Scholar]
- Prometheus Project Final Report; 982-R120461. Available online: http://fissilematerials.org/library/rr08.pdf (accessed on 19 November 2020).
- Meng, T.; Cheng, K.; Zheng, C.; He, Y.; Tan, S. Preliminary control strategies of megawatt-class gas-cooled space nuclear reactor with different control rod configurations. Prog. Nucl. Energy 2019, 113, 135–144. [Google Scholar] [CrossRef]
- Donne, M.D.; Goetzmann, C.A. Safety considerations for large GCFRs. Nucl. Eng. Des. 1977, 40, 69–80. [Google Scholar] [CrossRef]
- Establishment of the Preliminary Feasibility Study for the Project ALLEGRO Slovakia (EVO) [Tender Documents: T28043561] (2015). Available online: http://kf.elf.stuba.sk/~apcom/apcom15/proceedings/ (accessed on 19 November 2020).
- Gougar, D.; Petti, D.A.; Demkowicz, P.A.; Windes, W.E.; Strydom, G.; Kinsey, J.C.; Ortensi, J.; Plummer, M.; Skerjanc, W.; Williamson, R.L.; et al. The US Department of Energy’s high temperature reactor research and development program—Progress as of 2019. Nucl. Eng. Des. 2020, 358, 110397. [Google Scholar] [CrossRef]
- Wright, J.K.; Carroll, J.L.; Sham, T.L.; Lybeck, N.J.; Wright, R.N. Determination of the creep-fatigue interaction diagram for Alloy 617. In Proceedings of the ASME Pressure Vessels and Piping Conference 2016, Vancouver, BC, Canada, 17–21 July 2016; Volume 5. [Google Scholar]
- Růžičková, M.; Hájek, P.; Všolák, R.; Berka, J.; Šmejkalová, J. New Experimental Loops for Research Reactor LVR-15. In Materials of Science Forum; Trans. Tech. Publications: Freienbach, Switzerland, 2008; Volume 595–598, pp. 559–570. [Google Scholar]
- Fitzgerald, K.; Shepherd, D. Review of SiC f /SiC m corrosion, erosion and erosion-corrosion in high temperature helium relevant to GFR conditions. J. Nucl. Mater. 2018, 498, 476–494. [Google Scholar] [CrossRef]
- Kalivodová, J.; Steinbruck, M.; Mingazzini, C.; Casalegno, V.; Sauder, C. D3.33 Corrosion Behaviour and Residual Mechanical Properties of Seal-Coated and Pre-Cracked SiCf/SiC and Sandwich Clads after Exposure to Selected He chemistry; the EU Project MATISSE (ID: 604862). Available online: https://cordis.europa.eu/project/id/604862 (accessed on 19 November 2020).
- Naslain, R.R.; Pailler, R.J.F.; Lamon, J.L. Single- and multilayered interphases in SiCf/SiC composites exposed to severe environmental conditions: An overview. Int. J. Appl. Ceram. Technol. 2010, 7, 263–275. [Google Scholar] [CrossRef]
- Wolfer, W.G. Fundamental properties of defects in metals. In Comprehensive Nuclear Materials; Konings, R., Allen, T.R., Stoller, R.E., Yamanaka, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Toloczko, R.E.S.M.B.; Was, G.S.; Certain, A.G.; Dwaraknath, S.; Garner, F.A. On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. B 2013, 310, 75–80. [Google Scholar]
- Norgett, N.J.; Robinson, M.T.; Torrens, I.M. A proposed method of calculating displacement fluence rates. Nucl. Eng. Des. 1975, 33, 50–54. [Google Scholar] [CrossRef]
- Robinson, M.T. Basic physics of radiation damage production. J. Nucl. Mater. 1994, 216, 1–28. [Google Scholar] [CrossRef]
- Kawai, M. Summary of third workshop on materials science and technology for the spallation neutron source at KEK, March 2002. J. Nucl. Mater. 2003, 318, 371. [Google Scholar] [CrossRef]
- Stoller, R.E. Primary Radiation Damage Formation. In Comprehensive Nuclear Materials; Konings, R.J.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 293–332. [Google Scholar]
- Nordlund, K.; Zinkle, S.J.; Sand, A.E.; Granberg, F.; Averback, R.S.; Stoller, R.E.; Suzudo, T.; Malerba, L.; Banhart, F.; Weber, W.J.; et al. Primary radiation damage: A review of current understanding and models. J. Nucl. Mater. 2018, 512, 450–479. [Google Scholar] [CrossRef]
- Konobeyev, A.Y.; Fischer, U.; Korovin, Y.A.; Simakov, S.P. Evaluation of effective threshold displacement energies and other data required for the calculation of advanced atomic displacement cross-sections. Nucl. Energy Technol. 2017, 3, 169–175. [Google Scholar] [CrossRef]
- Simakov, S.P.; Fischer, U.; Koning, A.J. Iron NRT- and arc-displacement cross sections and their covariances. Nucl. Mater. Energy 2018, 15, 244–248. [Google Scholar] [CrossRef]
- Ogorodnikova, O.V.; Majerle, M.; Gann, V.V.; Čížek, J.; Hruška, P.; Simakov, S.; Štefánik, M.; Zach, V. Verification of the theory of primary radiation damage by comparison with experimental data. J. Nucl. Mater. 2019, 525, 22–31. [Google Scholar] [CrossRef]
- Zhang, S.; Čížek, J.; Yao, Z.; Oleksandr, M.; Kong, X.; Liu, C.; van Dijk, N.; van der Zwaag, S. Self-healing of radiation-induced damage in Fe-Au and Fe-Cu alloys: Combining positron annihilation spectroscopy with TEM and ab initio Calculations. J. Alloys Compd. 2020, 817, 152765. [Google Scholar] [CrossRef]
- Zibrov, M.; Egger, W.; Heikinheimo, J.; Mayer, M.; Tuomisto, F. Vacancy cluster growth and thermal recovery in hydrogen-irradiated tungsten. J. Nucl. Mater. 2020, 531, 152017. [Google Scholar] [CrossRef]
- Suzudo, T.; Golubov, S.I.; Stoller, R.E.; Yamaguchi, M.; Tsuru, T.; Kaburaki, H. Annealing simulation of cascade damage in Fe–Damage energy and temperature dependence analyses. J. Nucl. Mater. 2012, 423, 40–46. [Google Scholar] [CrossRef]
- Hautojärvi, P.; Johansson, J.; Vehanen, A.; Yli-Kauppila, J.; Moser, P. Vacancy-Carbon Interaction in Iron. Phys. Rev. Lett. 1980, 44, 1326–1329. [Google Scholar] [CrossRef]
- Zhang, S.; Schut, H.; Čížek, J.; Tichelaar, F.D.; Brück, E.; van der Zwaag, S.; van Dijk, N.H. Positron annihilation study on deformation-induced Au precipitation in Fe–Au and Fe–Au–B–N alloys. J. Mater. Sci. 2014, 49, 2509–2518. [Google Scholar] [CrossRef]
- Kočík, J.; Keilová, E.; Čížek, J.; Procházka, I. TEM and PAS Study of Irradiated reactor pressure vessel steels. J. Nucl. Mater. 2002, 303, 52–64. [Google Scholar] [CrossRef]
- Nagai, Y.; Toyama, T.; Nishiyama, Y.; Suzuki, M.; Tang, Z.M. Hasegawa Kinetics of irradiation-induced Cu precipitation in nuclear reactor pressure vessel steels. Appl. Phys. Lett. 2005, 87, 261920. [Google Scholar] [CrossRef]
- Ishida, T.; Wakai, E.; Hagiwara, M.; Makimura, S.; Tada, M.; Asner, D.M.; Casella, A.; Devaraj, A.; Edwards, D.; Prabhakaran, R.; et al. Study of the radiation damage effect on Titanium metastable beta alloy by high intensity proton beam. Nucl. Mater. Energy 2018, 15, 169–174. [Google Scholar] [CrossRef]
- Song, M.; Lear, C.R.; Parish, C.M.; Wang, M.; Was, G.S. Radiation tolerance of commercial and advanced alloys for core internals: A comprehensive microstructural characterization. J. Nucl. Mater. 2018, 50, 396–413. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, Z.; Zhang, Z.; Moliar, O.; Chen, C.; Cao, X.; Zhang, P.; van Dijk, N.; van der Zwaag, S. Mediation of high temperature radiation damage in bcc iron by Au or Cu precipitation. Nucl. Inst. Meth. Phys. Res. B 2020, 463, 69–75. [Google Scholar] [CrossRef]
- Tavassoli, A.A.F.; Diegele, E.; Lindau, R.; Luzginova, N.; Tanigawa, H. Current status and recent research achievements in ferritic/martensiticsteels. J. Nucl. Mater. 2014, 455, 269–276. [Google Scholar] [CrossRef]
- Sekio, Y.; Yamashita, S.; Sakaguchi, N.; Takahashi, H. Effect of Additional Minor Elements on Accumulation Behavior of Point Defects under Electron Irradiation in Austenitic Stainless Steels. Mater. Trans. 2014, 55, 438–442. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.; Qin, H.; Yao, Z.; Daymond, M.R. Irradiation damage and hardening in pure Zr and Zr-Nb alloys at 573 K from self-ion irradiation. Mater. Des. 2019, 161, 147–159. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Yeh, J.-W. Recent progress in high entropy alloys. Ann. Chim. Sci. Mater. 2006, 31, 633–648. [Google Scholar] [CrossRef]
- Egami, T.; Guo, W.; Rack, P.D.; Nagase, T. Irradiation Resistance of Multicomponent Alloys. Metall. Mater. Trans. A 2014, 45, 180–183. [Google Scholar] [CrossRef]
- Kumar, N.A.P.K.; Li, C.; Leonard, K.J.; Bei, H.; Zinkle, S.J. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 2016, 113, 230–244. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 2014, 81, 428–441. [Google Scholar] [CrossRef]
- Nagase, T.; Rack, P.D.; Noh, J.H.; Egami, T. In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics 2015, 59, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.Q.; Yang, X.; Yang, T.F.; Liu, S.; Zhang, Y. Irradiation resistance in AlxCoCrFeNi high entropy alloy. JOM 2015, 67, 2340–2344. [Google Scholar] [CrossRef]
- He, M.; Wang, S.; Jin, K.; Bei, H.; Yasuda, K.; Matsumura, S. Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation. Scr. Mater. 2016, 125, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Egami, T.; Ojha, M.; Khorgolkhuu, O.; Nicholson, D.M.; Stocks, G.M. Local electronic effects and irradiation resistance in high entropy alloys. JOM 2015, 67, 2345–2349. [Google Scholar] [CrossRef]
- Xia, A.Q.; Wang, Z.; Yang, T.-F.; Zhang, Y. Irradiation Behavior in High Entropy Alloys. J. Iron Steel Res. Int. 2015, 22, 879–884. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2014, 6, 299–302. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Yeh, J.-W. High-Entropy Alloys: A Critical Review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Tsai, K.-Y.; Tsai, M.-H.; Yeh, J.-W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013, 61, 4887–4897. [Google Scholar] [CrossRef]
- Vaidya, M.; Trubel, S.; Murty, B.S.; Wilde, G.; Divinski, S.V. Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloys Comp. 2016, 688, 994–1001. [Google Scholar] [CrossRef]
- Sugita, K.; Matsuoka, N.; Mizuno, M.; Araki, H. Vacancy formation enthalpy in CoCrFeMnNi high-entropy alloy. Scr. Mater. 2020, 176, 32–35. [Google Scholar] [CrossRef]
- Beke, D.L.; Erdély, G. On the diffusion in high-entropy alloys. Mater. Lett. 2016, 164, 111–113. [Google Scholar] [CrossRef]
- Ranganathan, S. Alloyed pleasures: Multimetallic cocktails. Curr. Sci. 2003, 85, 1404–1406. [Google Scholar]
- Saal, J.E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM 2013, 65, 1501–1509. [Google Scholar] [CrossRef]
- Huhn, W.P.; Widom, M. Prediction of A2 to B2 Phase Transition in the High-Entropy Alloy Mo-Nb-Ta-W. JOM 2013, 65, 1772–1779. [Google Scholar] [CrossRef] [Green Version]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory highentropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Senkov, O.N.; Senkova, S.V.; Woodward, C. Effect of aluminum on the microstructure and properties of two refractory high entropy alloys. Acta Mater. 2014, 68, 214–228. [Google Scholar] [CrossRef]
- Senkov, O.N.; Woodward, C.; Miracle, D.B. Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM 2014, 66, 2030–2042. [Google Scholar] [CrossRef]
- Couzinie, J.P.; Dirras, G.; Perriere, L.; Chauveau, T.; Leroy, E.; Champion, Y.; Guillot, I. Microstructure of a near-equimolar refractory high-entropy alloy. Mater. Lett. 2014, 126, 285–287. [Google Scholar] [CrossRef]
- Gorr, B.; Azim, M.; Christ, H.J.; Mueller, T.; Schliephake, D.; Heilmaier, M. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys. J. Alloys Compd. 2015, 624, 270–278. [Google Scholar] [CrossRef]
- Takeuchi, A.; Amiya, K.; Wada, T.; Yubuta, K.; Zhang, W. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM 2014, 66, 1984–1992. [Google Scholar] [CrossRef]
- Hammond, V.H.; Atwater, M.A.; Darling, K.A.; Nguyen, H.Q.; Kecskes, L.J. Equal channel angular extrusion of a low-density high-entropy alloy produced by high-energy cryogenic mechanical alloying. JOM 2014, 66, 2021–2029. [Google Scholar] [CrossRef]
- Yang, X.; Chen, S.Y.; Cotton, J.D.; Zhang, Y. Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium. JOM 2014, 66, 2009–2020. [Google Scholar] [CrossRef]
- Laws, K.J.; Crosby, C.; Sridhar, A.; Conway, P.L.J.; Koloadin, L.S.; Zhao, M.; Aron-Dine, S.; Bassman, L.C. High entropy brasses and bronzes—Microstructure, phase evolution and properties. J. Alloys Compd. 2015, 650, 949–961. [Google Scholar] [CrossRef]
- Paschoal, J.O.A.; Kleykamp, H.; Thummler, F. Phase equilibria in the quaternary molybdenum-ruthenium-rhodium-palladium system. Z. Metall. 1983, 74, 652. [Google Scholar]
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Kenik, E.A.; Busby, J.T. Radiation-induced degradation of stainless steel light water reactor internals. Mater. Sci. Eng. R Rep. 2012, 73, 67–83. [Google Scholar] [CrossRef]
- Bruemmer, S.M.; Simonen, E.P.; Scott, P.M.; Andresen, P.L.; Was, G.S.; Nelson, J.L. Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals. J. Nucl. Mater. 1999, 274, 299–314. [Google Scholar] [CrossRef]
- Zhang, Y.; Stocks, G.M.; Jin, K.; Lu, C.; Bei, H.; Sales, B.C.; Wang, L.; Beland, L.K.; Stoller, R.E.; Samolyuk, G.D.; et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 2015, 6, 8736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senkov, O.N.; Scott, J.M.; Senkova, S.V.; Miracle, D.B.; Woodward, C.F. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 2011, 509, 6043–6048. [Google Scholar] [CrossRef]
- Zýka, J.; Málek, J.; Veselý, J.; Lukáč, F.; Čížek, J.; Kuriplach, J.; Melikhova, O. Microstructure and Room Temperature Mechanical Properties of Different 3 and 4 Element Medium Entropy Alloys from HfNbTaTiZr System. Entropy 2019, 21, 114. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, J.F.; Biersack, J.P.; Littmark, U. The Stopping and Range of Ions in Solids; Pergamon: New York, NY, USA, 1985. [Google Scholar]
- Krause-Rehberg, R.; Leipner, H.S. Positron Annihilation in Semiconductors; Springer Series in Solid-State Sciences; Springer: Berlin, Germany, 1999; Volume 127. [Google Scholar]
- Čížek, J. Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: A review. J. Mater. Sci. Technol. 2018, 34, 577–598. [Google Scholar] [CrossRef]
- Čížek, J.; Procházka, I.; Kočík, J.; Keilová, E. Positron-lifetime study of reactor pressure vessel steels. Phys. Status Solidi (a) 2000, 178, 651–661. [Google Scholar] [CrossRef]
- Bečvář, F.; Čížek, J.; Procházka, I.; Janotová, J. The asset of ultra-fast digitizers for positron-lifetime spectroscopy. Nucl. Instrum. Methods Phys. Res. A 2005, 539, 372–385. [Google Scholar] [CrossRef]
- Čížek, J. PLRF Code for Decomposition of Positron Lifetime Spectra. Acta Phys. Pol. A 2020, 137, 177–187. [Google Scholar] [CrossRef]
- Lukáč, F.; Dudr, M.; Čížek, J.; Harcuba, P.; Vlasák, T.; Janeček, M.; Kuriplach, J.; Moon, J.; Kim, H.S.; Zýka, J.; et al. Defects in high entropy alloy HfNbTaTiZr prepared by high pressure torsion. Acta Phys. Pol. A 2018, 134, 891–894. [Google Scholar] [CrossRef]
- West, R.N. Positron studies of condensed matter. Adv. Phys. 1973, 22, 263–383. [Google Scholar] [CrossRef]
- Hautojärvi, P.; Corbel, C. Positron Spectroscopy of Solids; Dupasquier, A., Mills, A.P., Eds.; IOS Press: Amsterdam, The Netherlands, 1995; pp. 491–532. [Google Scholar]
- Koch, L.; Granberg, F.; Brink, T.; Utt, D.; Albe, K.; Djurabekova, F.; Nordlund, K. Local segregation versus irradiation effects in high-entropy alloys: Steady-state conditions in a driven system. J. Appl. Phys. 2017, 122, 105106. [Google Scholar] [CrossRef]
Defined Temperature Ranges | Corresponding Reactor Systems |
---|---|
<300 °C | LWR, LFR, SCWR, GFR, MSR, V/HTR |
300–500 °C | LFR, SCWR, GFR, MSR, V/HTR |
500–1000 °C | GFR, MSR, V/HTR |
>1000 °C | none |
List of abbreviations: LWR—Light Water Reactor LFR—Lead colled Water Reactor SCWR—Supercritical Water cooled Reactor GFR—Gas cooled Fast Reactor MSR—Molten Salt Reactor V/HTR—Very/High Temperature Reactor |
Reactor | GA GFR | GBR-2 | GBR-3 | GBR-4 | ENEA | Karlsruhe | UKEA | Gulf Ga | German GFR RD Program | USSR |
---|---|---|---|---|---|---|---|---|---|---|
Coolant | He | He | CO2 | He | He | He | He | He | He | N204 |
Thermal power [MW] | 835 | 3000 | 3000 | 3450 | 1000 | 1000 | 1000 | 450 | 1000 | |
Fuel type | pins | particle | particle | pins | pins | pins | pated particles | pins | pins | pins |
Fuel material | UpuO2 | UpuO2 | UpuO2 | UpuO2 | UpuO2 | UPuC | UpuO2 | UpuO2 | UpuO2 | UpuO2&Cr coating particles in the pin |
Clad Material | SS | SS | SS | SS | SS316 | SS316 | SS316 | SS | V-3Ti-1Si | 09X16H15M3B |
Tcore,in [°C] | 323 | 260 | 260 | 260 | ||||||
Tcore,out [°C] | 550 | 700 | 650 | 560 | 640 | 587 | 700 | 700 | 677 | |
Pressure [MPa] | 8.50 | 12.00 | 6.00 | 12.00 | 7 | 12 | 5.2 | 6.8 | 16-25 | |
Structural material | 12R72HV | |||||||||
direct cycle turbine; need O2 getter for clad | UO2CrO3, UO2NNb2O5 new clad compatible with N2O4 | |||||||||
Year of design data | 1974 | 1972 | 1972 | 1974 | 1968 | 1968 | 1968 | 1964 | 1970 | 1970 |
Reactor | UK-ETGBR | Japan | ETDR | GFR600 | GFR600 | GFR2400 | JAEA GFR | Allegro | PB-GFR US | EM2 |
Coolant | CO2 | He | He | He | He/sCO2 | He | He | He | He | He |
Thermal power [MW] | 1200 | 2400 | 50 | 600 | 600 | 2400 | 2400 | 2400 | 300 | 500 |
Fuel type | pins | kernels in SiC block | pin | pin | pin | pin | pin | pebble | pin | |
Fuel material | UN | UPuO2 | UPuC | UPuC | UPuC | UpuN | UpuO2 | mixed U-TRU carbide | UC | |
Clad Material | 20/25TiN | TiN, SiC, ZrC | AlM1 | SiC | SiC | SiC | SiC | MOX/SiC | SiC, ZrC | SiC/SiC |
Tcore,in [°C] | 252 | 250 | 480 | 400 | 480 | 480 | ||||
Tcore,out [°C] | 525 | 525 | 850 | 625 | 850 | 850 | 850 | 850 | ||
Pressure [MPa] | 5.7 | 7 | 7 | 7 | 7 | 7 | 7 | |||
Structural material | ref. AlM1 | Zr3Si2 | Zr3Si2 | Zr3Si2 | SiC | Zr3Si2, ref. SS316 | SiC/SiC, Zr3Si2 | |||
direct cycle | for LWR spent fuel | a direct closed-cycle gas turbine power conversion with an organic Rankine bottoming cycle | ||||||||
Year of design data | 1970 | 2002 | 2008 |
Component | Material Option | Operating Condition | Development Concern |
---|---|---|---|
Fuel | UO2 | 900–1773 K ~1022 n/cm2 | Swelling/cracking at low fluence/burn-up/burn-up rate, fission gas release rate uncertainty |
UN | Fission product chemistry, fission gas release rate, porosity evolution | ||
Fuel Cladding | Nb-1Zr | 900–1300 K ~1022 n/cm2 | Creep capability, radiation-induced and interstitial embrittlement |
FS-85 | Phase stability, radiation-induced and interstitial embrittlement | ||
T-111 | Phase stability, radiation-induced, and interstitial embrittlement | ||
Ta-10W | Radiation-induced and interstitial embrittlement | ||
ASTAR-811C | Interstitial embrittlement, phase ftability, fabricability | ||
Mo TZM | Irradiation embrittlement, irradiation creep capability, fabricability | ||
Mo-47Re | Radiation-induced embrittlement, phase instability | ||
SiC/SiC | Hermeticity, fracture toughness, conductive compliant layer | ||
Liner | Re, W, or W-Re | 900–1500 K ~1022 n/cm2 | Embrittlement, hermeticity, reaction with fuel/cladding, neutron poison |
None | FP attack of cladding | ||
Fuel Spring | W-25Re | 800–1300 K ~1022 n/cm2 | Radiation-induced embrittlement, relaxation |
Ta alloys | Radiation-induced and interstitial embrittlement, relaxation | ||
In-Pin Axial Reflector | BeO | 900–1300 K ~1022 n/cm2 | Irradiation swelling, He gas release, 6Li neutron poisoning, BeO handling concerns |
Core Block | Refractory Metal | 900–1200 K ~1022 n/cm2 | Fabricability, neutron absorption |
Graphite | Fracture toughness, C transport to refractory metal fuel | ||
Nickel Superalloy | Irradiation damage, C/O transport to refractory metal fuel | ||
In-Core Structure | Refractory Alloys | 900–1200 K ~1022 n/cm2 | Fabricability, radiation-induced and interstitial embrittlement |
Reactor Vessel | Nimonic PE-16 | Up to 900 K 1021 n/cm2 | Radiation-induced embrittlement, creep capability |
Alloy 617 | |||
Haynes 230 | |||
Safety Rod Thimble (if used) | Same as Vessel | Up to 1050 K 1022 n/cm2 | Irradiation embrittlement, creep capability |
Refractory metal | Irradiation embrittlement, creep, dissimilar material joining | ||
Radial Reflector | BeO | Up to 900 K 1021 n/cm2 | Irradiation swelling and He gas release, 6Li poisoning, Be/BeO handling restrictions |
Be | |||
Shielding | Water | Up to 500 K | Thermal management |
Be | Up to 800 K | Be handling restrictions during manufacturing | |
B4C | |||
LiH | Neutron and gamma swelling vs. temp. and irradiation | ||
Shielding and Reflector Canning | Steel or Ni Super-alloy | Same range as shielding | |
Titanium Alloy | |||
Loop Piping | Alloy 617 | 300–900 K | Maintenance of internal insulation @ 900 K, Joining |
Haynes 230 | Maintenance of internal insulation @ 900 K, Joining | ||
Insulation | Porous Metal or ceramic | Up to 1150 K | Thermal conductivity, loop material compatibility |
Ceramic Fiber | Thermal conductivity, loop material compatibility | ||
Insulation Liner | Mo Alloy | Up to 1150 K | Fabricability, compatibility with insulation, embrittlement |
Superalloy | cmpatibility with insulation | ||
Turbine Casing (scroll) | In-792 | Up to 1150 K | Creep capability, dissimilar materials joining (to piping) |
Mar-M-247 | |||
Alloy 617 or Haynes 230 | Up to 900 K | Requires internal insulation | |
Turbine Wheel | In-792 | Up to 950 K | Creep capability, carburization/decarburization/deoxidation |
Mar-M-247 | |||
Compressor | Ti-Al-V | 400–600 K | Compatibility w/gas loop |
Superalloy | |||
Shaft | 1018 Steel | 400–900 K | |
Superalloy | |||
Alternator Magnets | Sm-Co | 400–450 K | Loss of magnet strength, compatibility with gas loop |
Electrical Insulators | Ceramic or Glass | 400–450 K | Hermeticity, compatibility with gas loop |
Recuperator Core | Alloy 625/690 | 600–900 K | Thermal stability at hot side temp, Braze material concerns |
Carbon/Carbon | Compatibility with other loop components (C transport), fabricability | ||
Cooler Core | CP Titanium | 400–500 K | Compatibility with gas and water loops |
Alloy 625/690 |
Composition | δ (%) | SSS (R) | YS (MPa) | UTS (MPa) | Amax (%) | HV (GPa) | σ (barn) |
---|---|---|---|---|---|---|---|
NbTaTi | 1.05 | 1.10 | 620 | 683 | 18.5 | 2.42 ± 0.02 | 9.3 |
NbTaTiZr | 4.83 | 1.39 | 1144 | 1205 | 6.4 | 3.64 ± 0.02 | 7.0 |
Nb0.5TaTiZr1.5 | 5.22 | 1.32 | – | 843 | 0 | 4.80 ±0.03 | 6.9 |
HfNbTaTiZr | 4.98 | 1.61 | 1155 | 1212 | 12.3 | 3.48 ± 0.03 | 23.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čížek, J.; Kalivodová, J.; Janeček, M.; Stráský, J.; Srba, O.; Macková, A. Advanced Structural Materials for Gas-Cooled Fast Reactors—A Review. Metals 2021, 11, 76. https://doi.org/10.3390/met11010076
Čížek J, Kalivodová J, Janeček M, Stráský J, Srba O, Macková A. Advanced Structural Materials for Gas-Cooled Fast Reactors—A Review. Metals. 2021; 11(1):76. https://doi.org/10.3390/met11010076
Chicago/Turabian StyleČížek, Jakub, Jana Kalivodová, Miloš Janeček, Josef Stráský, Ondřej Srba, and Anna Macková. 2021. "Advanced Structural Materials for Gas-Cooled Fast Reactors—A Review" Metals 11, no. 1: 76. https://doi.org/10.3390/met11010076
APA StyleČížek, J., Kalivodová, J., Janeček, M., Stráský, J., Srba, O., & Macková, A. (2021). Advanced Structural Materials for Gas-Cooled Fast Reactors—A Review. Metals, 11(1), 76. https://doi.org/10.3390/met11010076