Optimization of the Cutting Regime in the Turning of the AISI 316L Steel for Biomedical Purposes Based on the Initial Progression of Tool Wear
Abstract
:1. Introduction
2. Materials and Methods
Objective Function and Optimization with NSGA-II
3. Results and Discussion
3.1. Study of the Initial Progression of the Cutting Tool Wear
3.2. Evaluation of the Wear of the Cutting Tool on the Relief Surface
3.3. Cutting Regime Optimization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nouri, A.; Wen, C. Stainless steels in orthopedics. In Structural Biomaterials: Properties, Characteristics and Selection; Wen, C., Ed.; Woodhead: Cambridge, UK, 2021; pp. 67–101. [Google Scholar]
- Lamichhane, Y.; Singh, G.; Bhui, A.S.; Mukhiya, P.; Kumar, P.; Thapa, B. Surface modification of 316l SS with hap nano-particles using pmedm for enhanced biocompatibility. Mater. Today: Proc. 2019, 15, 336–343. [Google Scholar] [CrossRef]
- Nomani, J.; Pramanik, A.; Hilditch, T.; Littlefair, G. Machinability study of first generation duplex (2205), second generation duplex (2507) and austenite stainless steel during drilling process. Wear 2013, 304, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Nur, R.; Noordin, M.Y.; Izman, S.; Kurniawan, D. Machining parameters effect in dry turning of AISI 316l stainless steel using coated carbide tools. Proc. Inst. Mech. Eng. E J. Process. Mech. Eng. 2015, 231, 676–683. [Google Scholar] [CrossRef]
- Kara, F.; Aslantaş, K.; Çiçek, A. Prediction of cutting temperature in orthogonal machining of AISI 316l using artificial neural network. Appl. Soft Comput. 2016, 38, 64–74. [Google Scholar] [CrossRef]
- Maurotto, A.; Tsivoulas, D.; Gu, Y.; Burke, M.G. Effects of machining abuse on the surface properties of AISI 316l stainless steel. Int. J. Press. Vess. Pip. 2017, 151, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Abia, A.I.; García, J.B.; López-de-Lacalle, L.N. High-performance machining of austenitic stainless steels. In Machining and Machine-Tools; Davim, J.P., Ed.; Woodhead: Cambridge, UK, 2013; pp. 29–90. [Google Scholar]
- Markopoulos, A.P.; Galanis, N.I.; Karkalos, N.E.; Manolakos, D.E. Precision CNC machining of femoral component of knee implant: A case study. Machines 2018, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.S. The study of high speed fine turning of austenitic stainless steel. J. Achiev. Mater. Manuf. Eng. 2008, 27, 191–194. [Google Scholar]
- Kadadevaru, S.G.; Kulkarni, V.N.; Gaitonde, V.N. A review on surface integrity studies in machining of biomedical alloys. Mater. Today: Proc. 2019, 18, 5494–5501. [Google Scholar] [CrossRef]
- Ciftci, I. Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools. Tribol. Int. 2006, 39, 565–569. [Google Scholar] [CrossRef]
- Maruda, R.W.; Legutko, S.; Krolczyk, J.B.; Wojciechowski, S.; Kot, W.; Hloch, S.; Klichová, D.; Krolczyk, G.; Chattopadhyaya, S.; Ruppenthalová, L. The influence of the application of ep additive in the minimum quantity cooling lubrication method on the tool wear and surface roughness in the process of turning 316L steel. In Advances in Manufacturing Engineering and Materials; Springer International: Manhattan, NY, USA, 2019; pp. 254–263. [Google Scholar]
- Fernández-Lucio, P.; Pereira-Neto, O.; Gómez-Escudero, G.; Amigo-Fuertes, F.J.; Fernández-Valdivielso, A.; López-de-Lacalle, L.N. Roughing milling with ceramic tools in comparison with sintered carbide on nickel-based alloys. Coatings 2021, 11, 734. [Google Scholar] [CrossRef]
- Yu, W.; Ming, W.; An, Q.; Chen, M. Cutting performance and wear mechanism of honeycomb ceramic tools in interrupted cutting of nickel-based superalloys. Ceram. Int. 2021, 47, 18075–18083. [Google Scholar] [CrossRef]
- Sisodiya, M.S.; Bajpai, V. An insight: Machining of titanium alloys & associated tool wear. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1017, 012013. [Google Scholar]
- Vereschaka, A.A.; Grigoriev, S.N.; Volosova, M.A.; Batako, A.; Vereschaka, A.S.; Sitnikov, N.N.; Seleznev, A.E. Nano-scale multi-layered coatings for improved efficiency of ceramic cutting tools. Int. J. Adv. Manuf. Technol. 2017, 90, 27–43. [Google Scholar] [CrossRef]
- Memarianpour, M.; Niknam, S.A.; Turenne, S.; Balazinski, M.; Fujita, H.; Nguyen, D.; Vu, N.; Banh, T.; Puta, H. Initial tool wear mechanism in dry and lubricated turning of Inconel 718. In Advances in Engineering Research and Application; Springer International: Manhattan, NY, USA, 2019; pp. 390–397. [Google Scholar]
- Aramesh, M.; Shaban, Y.; Yacout, S.; Attia, M.H.; Kishawy, H.A.; Balazinski, M. Survival life analysis applied to tool life estimation with variable cutting conditions when machining titanium metal matrix composites (Ti-MMCs). Mach. Sci. Technol. 2016, 20, 132–147. [Google Scholar] [CrossRef]
- Amouzgar, K.; Bandaru, S.; Andersson, T.; Ng, A.H.C. Metamodel-based multi-objective optimization of a turning process by using finite element simulation. Eng. Optim. 2020, 52, 1261–1268. [Google Scholar] [CrossRef] [Green Version]
- Eskandari, B.; Davoodi, B.; Ghorbani, H. Multi-objective optimization of parameters in turning of N-155 iron-nickel-base superalloy using gray relational analysis. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 233. [Google Scholar] [CrossRef]
- Gunantara, N. A review of multi-objective optimization: Methods and its applications. Cogent Eng. 2018, 5, 1502242. [Google Scholar] [CrossRef]
- NTK Cutting Tools. New Products; NTK Cutting Tools: Kamaki, Japan, 2016; Volume 2, pp. 2–4. [Google Scholar]
- Mirjalili, S.; Dong, J.S. Multi-Objective Optimization Using Artificial Intelligence Techniques; Springer International: Cham, Switzerland, 2020; 58p. [Google Scholar]
- Balogun, V.A.; Edem, I.F.; Mativenga, P.T. Process mechanisms and their relevance for sustainable machining processes. Procedia Manuf. 2019, 35, 361–366. [Google Scholar] [CrossRef]
- Luan, X.; Zhang, S.; Li, J.; Mendis, G.; Zhao, F.; Sutherland, J.W. Trade-off analysis of tool wear, machining quality and energy efficiency of alloy cast iron milling process. Procedia Manuf. 2018, 26, 383–393. [Google Scholar] [CrossRef]
- Kumar, C.S.; Patel, S.K. Experimental and numerical investigations on the effect of varying AlTiN coating thickness on hard machining performance of al2o3-ticn mixed ceramic inserts. Surf. Coat. Technol. 2017, 309, 266–281. [Google Scholar] [CrossRef]
- Labidi, A.; Tebassi, H.; Belhadi, S.; Khettabi, R.; Yallese, M.A. Cutting conditions modeling and optimization in hard turning using RSM, ANN and desirability function. J. Fail. Anal. Prev. 2018, 18, 1017–1033. [Google Scholar] [CrossRef]
- Mohd Ali, A.; Ahmad Azhar, A.Z.; Ratnam, M.M.; Ahmad, Z.A. Wear analysis of ZTA-MgO ceramic cutting inserts on stainless steel 316L machining. Adv. Mater. Res. 2015, 1087, 101–105. [Google Scholar] [CrossRef]
- Mohd Ali, A.; Abdullah, N.S.; Ratnam, M.; Ahmad, Z.A. The cutting speed influences on tool wear of ZTA ceramic cutting tools and surface roughness of work material stainless steel 316L during high speed machining. Mater. Sci. Forum 2016, 840, 315–320. [Google Scholar] [CrossRef]
- Ahmad Azhar, A.Z.; Mokhtar, M.; Ratnam, M.M.; Ahmad, Z.A. Effects of tin single layer coating on the wear of ZTA cutting inserts and surface roughness of workpiece. Mater. Sci. Forum 2017, 888, 52–56. [Google Scholar] [CrossRef]
- Karkalos, N.E.; Markopoulos, A.P.; Davim, J.P. Computational Methods for Application in Industry 4.0, 1st ed.; Springer International: Cham, Switzerland, 2019; 67p. [Google Scholar]
- Jiang, S.; Ong, Y.S.; Zhang, J.; Feng, L. Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans. Cybern. 2014, 44, 2391–2404. [Google Scholar] [CrossRef]
% W | % O | % Al | % C | % Zr | |
---|---|---|---|---|---|
External Zone | 55.23 | 18.78 | 16.12 | 6.4 | 3.45 |
Internal Zone | 56.22 | 17.94 | 17.33 | 4.92 | 3.57 |
Input Parameters | Output Parameters | Input Parameters | Output Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | V | f | LC | VB | Ra | Fz | No. | V | f | LC | VB | Ra | Fz |
1 | 0 | −1 | 1 | 0.077 | 0.30 | 248.17 | 28 | 0 | −1 | 1 | 0.076 | 0.41 | 240.30 |
2 | 1 | 1 | −1 | 0.044 | 0.38 | 290.97 | 29 | 1 | −1 | 1 | 0.096 | 0.33 | 220.81 |
3 | 1 | 1 | 1 | 0.075 | 0.54 | 340.11 | 30 | −1 | 0 | −1 | 0.055 | 0.48 | 290.72 |
4 | −1 | 0 | 1 | 0.060 | 0.55 | 310.98 | 31 | 0 | 0 | 1 | 0.074 | 0.49 | 288.98 |
5 | 0 | −1 | −1 | 0.054 | 0.30 | 229.22 | 32 | −1 | −1 | 1 | 0.063 | 0.57 | 289.99 |
6 | −1 | −1 | 1 | 0.062 | 0.53 | 290.87 | 33 | 1 | 0 | 1 | 0.091 | 0.40 | 285.01 |
7 | −1 | 1 | 1 | 0.050 | 0.67 | 383.81 | 34 | −1 | 0 | 1 | 0.061 | 0.58 | 319.90 |
8 | 1 | 0 | 1 | 0.080 | 0.38 | 280.70 | 35 | 1 | 0 | −1 | 0.050 | 0.34 | 222.40 |
9 | 0 | 1 | 1 | 0.064 | 0.66 | 348.49 | 36 | 0 | 1 | −1 | 0.049 | 0.42 | 290.26 |
10 | 1 | −1 | 1 | 0.097 | 0.30 | 224.27 | 37 | 0 | −1 | −1 | 0.052 | 0.30 | 237.05 |
11 | −1 | −1 | −1 | 0.046 | 0.47 | 242.89 | 38 | 1 | 1 | 1 | 0.078 | 0.52 | 345.55 |
12 | 0 | 1 | −1 | 0.048 | 0.43 | 291.04 | 39 | 0 | 0 | −1 | 0.041 | 0.44 | 260.38 |
13 | 0 | 0 | −1 | 0.053 | 0.41 | 261.82 | 40 | 0 | 1 | 1 | 0.073 | 0.64 | 351.78 |
14 | −1 | 1 | −1 | 0.041 | 0.52 | 330.37 | 41 | 0 | 1 | −1 | 0.049 | 0.44 | 288.00 |
15 | 1 | 0 | −1 | 0.049 | 0.33 | 215.91 | 42 | −1 | 1 | 1 | 0.061 | 0.66 | 379.04 |
16 | −1 | 0 | −1 | 0.044 | 0.49 | 288.87 | 43 | 1 | −1 | −1 | 0.064 | 0.26 | 205.63 |
17 | 1 | −1 | −1 | 0.058 | 0.25 | 200.28 | 44 | 0 | 0 | 1 | 0.072 | 0.51 | 292.54 |
18 | 0 | 0 | 1 | 0.074 | 0.52 | 280.48 | 45 | −1 | −1 | 1 | 0.064 | 0.55 | 225.29 |
19 | −1 | −1 | −1 | 0.048 | 0.48 | 229.63 | 46 | 0 | −1 | 1 | 0.076 | 0.37 | 244.65 |
20 | 1 | 1 | 1 | 0.087 | 0.50 | 344.89 | 47 | −1 | −1 | −1 | 0.030 | 0.46 | 233.31 |
21 | −1 | 1 | −1 | 0.037 | 0.51 | 344.18 | 48 | −1 | 0 | −1 | 0.038 | 0.49 | 285.02 |
22 | 0 | 0 | −1 | 0.051 | 0.42 | 263.77 | 49 | 1 | −1 | 1 | 0.088 | 0.31 | 223.08 |
23 | 0 | −1 | −1 | 0.050 | 0.32 | 231.41 | 50 | −1 | 0 | 1 | 0.060 | 0.54 | 314.86 |
24 | −1 | 1 | 1 | 0.058 | 0.68 | 384.66 | 51 | 1 | 0 | −1 | 0.068 | 0.33 | 218.83 |
25 | 0 | 1 | 1 | 0.070 | 0.68 | 346.43 | 52 | 1 | 0 | 1 | 0.082 | 0.42 | 284.35 |
26 | 1 | 1 | −1 | 0.048 | 0.40 | 292.39 | 53 | 1 | 1 | −1 | 0.071 | 0.37 | 296.17 |
27 | 1 | −1 | −1 | 0.056 | 0.29 | 202.39 | 54 | −1 | 1 | −1 | 0.041 | 0.53 | 332.12 |
Lubrication Regime | Equation of the Initial Progression of Tool Wear | R2 |
---|---|---|
Dry | 0.99 | |
MQL | 0.92 |
Solution | Variables | Objectives | Restriction | |||
---|---|---|---|---|---|---|
V [m/min] | F [mm/rev] | t0 [min/dm3] | E0 [kW·h/dm3] | Ra [μm] | ||
A | 200 | 0.10 | 100.0 | 1.44 | 0.146 | 0.47 |
B | 200 | 0.11 | 90.9 | 1.38 | 0.158 | 0.50 |
C | 400 | 0.20 | 25.0 | 0.92 | 0.741 | 0.50 |
Solution | Variables | Objectives | Restriction | |||
---|---|---|---|---|---|---|
V [m/min] | F [mm/r] | t0 [min/dm3] | E0 [kW·h/dm3] | Ra [μm] | ||
A | 200 | 0.10 | 100.0 | 1.35 | 0.098 | 0.42 |
B | 200 | 0.15 | 90.9 | 1.28 | 0.106 | 0.50 |
C | 240 | 0.20 | 41.7 | 0.88 | 0.238 | 0.50 |
D | 400 | 0.20 | 25.0 | 0.77 | 0.491 | 0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
del Risco-Alfonso, R.; Pérez-Rodríguez, R.; Zambrano Robledo, P.d.C.; Rivas Santana, M.; Quiza, R. Optimization of the Cutting Regime in the Turning of the AISI 316L Steel for Biomedical Purposes Based on the Initial Progression of Tool Wear. Metals 2021, 11, 1698. https://doi.org/10.3390/met11111698
del Risco-Alfonso R, Pérez-Rodríguez R, Zambrano Robledo PdC, Rivas Santana M, Quiza R. Optimization of the Cutting Regime in the Turning of the AISI 316L Steel for Biomedical Purposes Based on the Initial Progression of Tool Wear. Metals. 2021; 11(11):1698. https://doi.org/10.3390/met11111698
Chicago/Turabian Styledel Risco-Alfonso, Ricardo, Roberto Pérez-Rodríguez, Patricia del Carmen Zambrano Robledo, Marcelino Rivas Santana, and Ramón Quiza. 2021. "Optimization of the Cutting Regime in the Turning of the AISI 316L Steel for Biomedical Purposes Based on the Initial Progression of Tool Wear" Metals 11, no. 11: 1698. https://doi.org/10.3390/met11111698
APA Styledel Risco-Alfonso, R., Pérez-Rodríguez, R., Zambrano Robledo, P. d. C., Rivas Santana, M., & Quiza, R. (2021). Optimization of the Cutting Regime in the Turning of the AISI 316L Steel for Biomedical Purposes Based on the Initial Progression of Tool Wear. Metals, 11(11), 1698. https://doi.org/10.3390/met11111698