Evaluation of the Stress Concentration Factor in Butt Welded Joints: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of Geometrical Parameters of Welded Joints
2.2. Stress Concentration Factor (SCF)
2.3. Evaluation of Stress Concentration Using the Finite Element Method (FEM)
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lawrence, F.V. Estimation of Fatigue-Crack Propagation Life in Butt Welds. Weld. Res. Suppl. 1973, 52, 212–220. [Google Scholar]
- Radaj, D.; Sonsino, C.M.; Fricke, W. Fatigue Assessment of Welded Joints by Local Approaches; Woodhead Publishing Ltd.: Cambridge, UK, 2006; p. 183. [Google Scholar]
- Fujisaki, W.; Noda, N.; Tanaka, H.; Nisitani, H. Effects of Reinforcement Geometry and Welding Condition on Stress Concentration Factor of Butt Welded Joint. J. Soc. Mater. Sci. Jpn. 1990, 39, 1533–1538. [Google Scholar] [CrossRef] [Green Version]
- Ilda, K.; Uemura, T. Stress Concentration Factor Formulae Widely Used in Japan. Fatigue Fract. Eng. Mater. Struct. 1996, 19, 779–786. [Google Scholar]
- Harati, E.; Svensson, L.-E.; Karlsson, L. The Measurement of Weld Toe Radius Using Three Non-destructive Techniques. In Proceedings of the 6th International Swedish Production Symposium, Stoskholm, Sweden, 16–18 September 2014. [Google Scholar]
- Groš, J.; Medić, S.; Brozović, M. Metode trodimenzionalnog optičkog mjerenja i kontrole geometrije oblika. Zb. Veleučilišta U Karlov. 2012, 1, 43–48. (In Croatian) [Google Scholar]
- Randić, M.; Pavletić, D.; Turkalj, G. The Measurement of Weld Surface Geometry. In Proceedings of the XVII simpozij International Maritime Association of the Mediteranean, Lisabon, Portugal, 9–11 October 2017. [Google Scholar]
- Randić, M.; Pavletić, D.; Turkalj, G. Multiparametric investigation of welding techniques on toe radius of high strength steel at low-temperature levels using 3D-scanning techniques. Metals 2019, 9, 1355. [Google Scholar] [CrossRef] [Green Version]
- Marques, S.V.E.; Silva, J.G.F.; Pereira, A.B. Comparison of Finite Element Methods in Fusion Welding Processes—A Review. Metals 2020, 10, 75. [Google Scholar] [CrossRef] [Green Version]
- Pavani, P.; Sivasankar, P.; Lokanadham, P.; Uma Mhahesh, P. Finite Element Analysis of Residual Stress in Butt Welding of Two Similar Plates. Int. Res. J. Eng. Technol. 2015, 2, 57–60. [Google Scholar]
- Kiyak, Y.; Madia, M.; Zerbst, U. Extended Parametric Equations for Weld Toe Sress Concentration Factors and Through-thickness Stress Distributions in Butt-welded Plates Subject to Tensile and Bending Loading. Weld World 2016, 16, 1247–1259. [Google Scholar] [CrossRef]
- Ninh Nguyen, T.; Wahab, M.A. Theoretical Study of the Effect of Weld Geometry Parameters on Fatigue Crack Propagation Life. Eng. Fract. Mech. 1995, 51, 1–18. [Google Scholar] [CrossRef]
- Pang, H.L.J. Analysis of Weld Toe Radius Effects on Fatigue Weld Toe Cracks. Int. J. Press. Vessel. Pip. 1994, 58, 171–177. [Google Scholar] [CrossRef]
- Pang, H.L.J. Analysis of Weld Toe Profiles and Weld Toe Cracks. Int. J. Fatique 1993, 15, 31–36. [Google Scholar] [CrossRef]
- Cerit, M.; Kokumer, O.; Genel, K. Stress Concentration Effects of Undercut Defect and Reinforcement Metal in Butt Welded Joint. Eng. Fail. Anal. 2010, 17, 571–578. [Google Scholar] [CrossRef]
- Rong, Y.; Xu, J.; Huang, Y.; Zhang, G. Review on finite element analysis of welding deformation and residual stress. Sci. Technol. Weld. Join. 2018, 23, 198–208. [Google Scholar] [CrossRef]
- Jeffus, L. Welding Principles and Applications, 7th ed.; Delmar: New York, NY, USA, 2012. [Google Scholar]
- Niemi, E.; Fricke, W.; Maddox, S.J. Fatigue Analysis of Welded Components; Woodhead Publishing Ltd.: Cambridge, UK, 2006. [Google Scholar]
- Ushirokawa, O.; Nakayama, E. Stress concentration factor at Welded Joints. Ishikawajima-Harima Eng. Rev. 1983, 23, 98–103. [Google Scholar]
- Thakore, D. Finite Element Analysis with Open Source Software; Moonish Enterprises Pty Ltd.: Brisbene, Australia, 2014. [Google Scholar]
Welding Method | Level | |
---|---|---|
Lower (−) | Higher (+) | |
Number of cover passes | 1 pass | 3 passes |
Electrode stick-out length | 5 mm | 15 mm |
Shielding gas | 82% Ar + 18% CO2 | 100% CO2 |
Input Factor | Sample Label/Input Factor Level | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
Number of cover passes | − | − | − | − | + | + | + | + |
Electrode stick-out length | − | − | + | + | − | − | + | + |
Shielding gas | − | + | − | + | − | + | − | + |
Experiment Number A 03 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Thickness of the base material 10 mm | |||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
Geometric dimensions of a welded joint | SCF | ||||||||||||||
Distance of the measure-ment section from the base | Reinforcement height | Weld width | Weld toe angle | Toe radius | Ushirokawa and Nakayama expression (1) | Expression (2) Kt = f(φ) | Expressions (3a to 3d) Kt = f(φ) With respect to θ | FEM | |||||||
mm | mm | mm | O | mm | left | right | left | right | left | right | left | right | |||
left | right | left | right | ||||||||||||
Band A | 20 | 1.77 | 18.87 | 20.85 | 39.04 | 0.69 | 0.57 | 1.77379 | 2.21288 | 1.86867 | 2.02441 | 1.80647 | 2.06190 | 1.5638 | 2.0613 |
21 | 1.90 | 18.86 | 22.66 | 41.21 | 0.56 | 0.35 | 1.95285 | 2.74899 | 2.03948 | 2.48340 | 1.92926 | 2.80289 | 1.7751 | 2.2511 | |
22 | 1.78 | 18.86 | 22.47 | 39.73 | 0.38 | 0.31 | 2.19632 | 2.81883 | 2.39928 | 2.61294 | 2.17990 | 2.58781 | 1.9034 | 2.4481 | |
23 | 1.63 | 18.65 | 23.28 | 39.02 | 0.47 | 0.48 | 2.03937 | 2.31820 | 2.19483 | 2.17556 | 2.03872 | 2.19840 | 1.8422 | 2.0989 | |
24 | 1.56 | 18.44 | 25.05 | 37.62 | 0.35 | 0.29 | 2.29857 | 2.77928 | 2.48340 | 2.68699 | 2.23711 | 2.65299 | 1.8312 | 2.4103 | |
25 | 1.55 | 18.54 | 27.84 | 35.80 | 0.58 | 0.34 | 1.98523 | 2.56588 | 2.00971 | 2.51374 | 1.90805 | 2.50016 | 1.6731 | 2.3288 | |
26 | 1.57 | 18.32 | 24.14 | 36.35 | 0.56 | 0.37 | 1.94103 | 2.50505 | 2.03948 | 2.42624 | 1.92926 | 2.42254 | 1.7591 | 2.1662 | |
27 | 1.68 | 18.04 | 23.84 | 37.56 | 0.41 | 0.41 | 2.14512 | 2.47234 | 2.32410 | 2.32410 | 2.12835 | 2.33153 | 1.8187 | 2.2694 | |
28 | 1.59 | 18.14 | 21.92 | 40.04 | 0.65 | 0.30 | 1.81307 | 2.80651 | 1.91602 | 2.64909 | 1.84078 | 2.96786 | 1.6502 | 2.4512 | |
29 | 1.51 | 18.39 | 24.03 | 41.73 | 0.92 | 0.27 | 1.67052 | 2.91315 | 1.65647 | 2.76866 | 1.64997 | 3.08617 | 1.5194 | 2.3711 | |
30 | 1.49 | 18.45 | 22.81 | 44.68 | 0.62 | 0.45 | 1.83690 | 2.39434 | 1.95433 | 2.23519 | 1.86838 | 2.55337 | 1.7464 | 2.1056 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Randić, M.; Pavletić, D.; Fabić, M. Evaluation of the Stress Concentration Factor in Butt Welded Joints: A Comparative Study. Metals 2021, 11, 411. https://doi.org/10.3390/met11030411
Randić M, Pavletić D, Fabić M. Evaluation of the Stress Concentration Factor in Butt Welded Joints: A Comparative Study. Metals. 2021; 11(3):411. https://doi.org/10.3390/met11030411
Chicago/Turabian StyleRandić, Miroslav, Duško Pavletić, and Marko Fabić. 2021. "Evaluation of the Stress Concentration Factor in Butt Welded Joints: A Comparative Study" Metals 11, no. 3: 411. https://doi.org/10.3390/met11030411
APA StyleRandić, M., Pavletić, D., & Fabić, M. (2021). Evaluation of the Stress Concentration Factor in Butt Welded Joints: A Comparative Study. Metals, 11(3), 411. https://doi.org/10.3390/met11030411