A Study of the Feasibility of Using Ammonium Sulfate in Copper—Nickel Ore Processing
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Copper–Nickel Ore Flotation
3.2. X-ray Diffraction Analysis of Clinker Samples and Leach Residue
3.3. TG-DSC Study of a Concentrate Mixture with Ammonium Sulfate
3.4. The Effect of the Roasting Temperature on the Recovery of Metals into Solution
3.5. The Effect of the Concentrate to Ammonium Sulfate Ratio on the Recovery of Metals into Solution
3.6. The Effect of Grinding on the Recovery of Metals into Solution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mantsevich, M.I.; Malinsky, R.A.; Khersonsky, M.I.; Lapshina, G.A. Search for methods to improve the grade of copper-nickel concentrates. Min. Inf. Anal. Bull. 2008, 7, 359–363. (In Russian) [Google Scholar]
- Batterham, R.J.; Robinson, D.J. The future of mining: Will in place recovery ever come of age? In Proceedings of the XXIX International Mineral Processing Congress 2018, Moscow, Russia, 17–21 September 2018; Ore and Metals: Moscow, Russia, 2018; pp. 13–22. [Google Scholar]
- CSIRO. Producing More from Less. 2015. Available online: https://www.csiro.au/en/Research/MRF/Areas/Resourcefulmagazine/Issue-07/Producing-more-from-less (accessed on 14 December 2020).
- Algebraistova, N.K.; Mikheev, V.G.; Markova, S.A.; Gaivoronskaya, M.V.; Kondratieva, A.A.; Groo, E.A.; Razvyaznaya, A.V. Technological assessment of impregnated copper-nickel ore processing. Min. Inf. Anal. Bull. 2013, 2, 56–67. (In Russian) [Google Scholar]
- Kirjavainen, V.; Heiskanen, K. Some factors that affect beneficiation of sulphide nickel–copper ores. Min. Eng. 2007, 20, 629–633. [Google Scholar] [CrossRef]
- Zhao, K.L.; Gu, G.H.; Wang, H.; Wang, C.L.; Wang, X.H.; Luo, C. Influence of depressant foenum-graecum on the flotation of a sulfide ore which contains hydrophobic gangue. Int. J. Miner. Proc. 2014, 141, 68–76. [Google Scholar] [CrossRef]
- Bao, Y.; Xu, G.; Tian, X.; Xu, P.; Ma, J. Effect of ammonia molecules on the separation of pentlandite from serpentine using copper (II) as activator. Sep. Purif. Technol. 2018, 200, 242–254. [Google Scholar] [CrossRef]
- Chernousenko, E.V.; Neradovsky, Y.N.; Kameneva, Y.S.; Vishnyakova, I.N.; Mitrofanova, G.V. Increasing efficiency of Pechenga rebellious copper-nickel sulphide ore flotation. J. Min. Sci. 2018, 54, 1035–1040. [Google Scholar] [CrossRef]
- Kopylov, V.V.; Nesterov, K.V.; Kurbatov, E.A.; Molodtsev, M.S. The efficient practice of processing refractory ores at Kola MMC’s concentrator plant. Tsvetnye Met. 2020, 3. (In Russian) [Google Scholar] [CrossRef]
- Likhacheva, S.V.; Neradovskiy, Y.N. Decreasing of losses of nickel with flotation tailings of Pechenga copper-nickel ores. Tsvetnye Met. 2013, 10, 37–40. (In Russian) [Google Scholar]
- Zhu, G.C.; Li, F.P.; Xiao, M.G. Process of enriching and recovering Mn by roasting the low-grade manganese carbonate ore with ammonium sulfate. J. Guilin Univ. Technol. 2005, 25, 534–540. [Google Scholar]
- Li, D.F.; Wang, C.Y.; Yin, F.; Chen, Y.Q.; Jie, X.W.; Yang, Y.Q.; Wang, J. Leaching of valuable metals from roasted residue of spent lithium-ion batteries with ammonium sulfate. Chin. J. Proc. Eng. 2009, 2, 264–268. [Google Scholar]
- Sukla, L.B.; Panda, S.C.; Jena, P.K. Recovery of cobalt, nickel and copper from converter slag through roasting with ammonium sulphate and sulphuric acid. Hydrometalllurgy 1986, 16, 153–165. [Google Scholar] [CrossRef]
- Mu, W.; Cui, F.; Huang, Z.; Zhai, Y.; Xu, Q.; Luo, S. Synchronous extraction of nickel and copper from a mixed oxidesulfide nickel ore in a low-temperature roasting system. J. Clean. Prod. 2018, 177, 371–377. [Google Scholar] [CrossRef]
- Li, G.; Xiong, X.; Wang, L.; Che, L.; Wei, L.; Cheng, H.; Zou, X.; Xu, Q.; Zhou, Z.; Li, S.; et al. Sulfation roasting of nickel oxide–sulfide mixed ore concentrate in the presence of ammonium sulfate: Experimental and DFT studies. Metals 2019, 9, 1256. [Google Scholar] [CrossRef] [Green Version]
- Dunn, J.G. The oxidation of sulphide minerals. Therm. Acta 1997, 300, 127–139. [Google Scholar] [CrossRef]
- Dorogina, G.A.; Gulyaeva, R.I.; Selivanov, E.N.; Balakirev, V.F. Thermal and thermomagnetic properties of pyrrhotites. Rus. J. Inorg. Chem. 2015, 60, 301–306. [Google Scholar] [CrossRef]
- Xia, F.; Pring, A.; Brugger, J. Understanding the mechanism and kinetics of pentlandite oxidation in extractive pyrometallurgy of nickel. Min. Eng. 2012, 27–28, 11–19. [Google Scholar] [CrossRef]
- Sahyoun, C.; Kingman, S.W.; Rowson, N.A. The effect of heat treatment on chalcopyrite. Phys. Sep. Sci. Eng. 2003, 12, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Utigard, T.A. TG/DTA study on the oxidation of nickel concentrate. Therm. Acta 2012, 533, 56–65. [Google Scholar] [CrossRef]
- Ivanova, V.P.; Kasatov, B.K.; Krasavina, T.N.; Rozinova, E.L. Thermal Analysis of Minerals and Rocks; Nedra: Leningrad, Russia, 1974; p. 399. (In Russian) [Google Scholar]
- Popov, Y.V.; Zhabin, A.V.; Pustovit, O.E. Mineral composition of serpentinites of the tectonic melange of the Dakhovsky crystalline protrusion (Greater Caucasus). Geol. South Russ. 2019, 9, 38–48. (In Russian) [Google Scholar]
- Zulumyan, N.; Isahakyan, A.; Beglaryan, H.; Melikyan, S. A study of thermal decomposition of antigorite from duniteand lizardite from peridotite. J. Therm. Anal. Calorim. 2018, 131, 1201–1211. [Google Scholar] [CrossRef]
Product | Yield, % | Grade, % | Recovery, % | Reagent Flow Rate, g/t | ||
---|---|---|---|---|---|---|
Ni | Cu | Ni | Cu | |||
Rougher froth | 14.03 | 3.41 | 1.61 | 66.17 | 77.28 | Rougher flotation: Na2CO3—3000, Kx—100, Af—60, CuSO4—15 Scavenger flotation: Kx—35, Af—35, CuSO4—15 |
Scavenger froth | 15.77 | 0.883 | 0.234 | 19.26 | 12.63 | |
Rougher concentrate | 29.80 | 2.07 | 0.881 | 85.44 | 89.91 | |
Tailings | 70.20 | 0.150 | 0.042 | 14.56 | 10.09 | |
Feed | 100.0 | 0.723 | 0.292 | 100.0 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goryachev, A.A.; Chernousenko, E.V.; Potapov, S.S.; Tsvetov, N.S.; Makarov, D.V. A Study of the Feasibility of Using Ammonium Sulfate in Copper—Nickel Ore Processing. Metals 2021, 11, 422. https://doi.org/10.3390/met11030422
Goryachev AA, Chernousenko EV, Potapov SS, Tsvetov NS, Makarov DV. A Study of the Feasibility of Using Ammonium Sulfate in Copper—Nickel Ore Processing. Metals. 2021; 11(3):422. https://doi.org/10.3390/met11030422
Chicago/Turabian StyleGoryachev, Andrey A., Elena V. Chernousenko, Sergey S. Potapov, Nikita S. Tsvetov, and Dmitriy V. Makarov. 2021. "A Study of the Feasibility of Using Ammonium Sulfate in Copper—Nickel Ore Processing" Metals 11, no. 3: 422. https://doi.org/10.3390/met11030422
APA StyleGoryachev, A. A., Chernousenko, E. V., Potapov, S. S., Tsvetov, N. S., & Makarov, D. V. (2021). A Study of the Feasibility of Using Ammonium Sulfate in Copper—Nickel Ore Processing. Metals, 11(3), 422. https://doi.org/10.3390/met11030422