Towards Understanding Relationships between Tension Property and Twinning Boundaries in Magnesium Alloy
Abstract
:1. Introduction
2. Experiments
2.1. Initial Material and Deformation
2.2. EBSD and TEM Examinations
3. Results
3.1. Mechanical Properties
3.2. Microstructure Features Caused by Pre-Strain
3.3. Microstructures Investigated by TEM
4. Discussions
4.1. The Influence of Pre-Strain on the Tension Property
4.2. Strengthening Related to Twinning Boundaries
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mordike, B.L.; Ebert, T. Magnesium: Properties-applications-potential. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2001, 302, 37–45. [Google Scholar] [CrossRef]
- Zhang, K.; Shao, Z.; Daniel, C.S.; Turski, M.; Pruncu, C.; Lang, L.; Robson, J.; Jiang, J. A comparative study of plastic deformation mechanisms in room-temperature and cryogenically deformed magnesium alloy AZ31. Mater. Sci. Eng. A 2021, 807, 140821. [Google Scholar] [CrossRef]
- Zhang, K.; Zheng, J.-H.; Huang, Y.; Pruncu, C.; Jiang, J. Evolution of twinning and shear bands in magnesium alloys during rolling at room and cryogenic temperature. Mater. Des. 2020, 193, 108793. [Google Scholar] [CrossRef]
- Christian, J.W.; Mahajan, S. Deformation twinning. Prog. Mater. Sci. 1995, 39, 1–157. [Google Scholar] [CrossRef]
- Zeng, Z.R.; Zhu, Y.M.; Xu, S.W.; Bian, M.Z.; Davies, C.H.J.; Birbilis, N.; Nie, J.F. Texture evolution during static recrystallization of cold-rolled magnesium alloys. Acta Mater. 2016, 105, 479–494. [Google Scholar] [CrossRef]
- Park, S.H.; Hong, S.-G.; Lee, J.H.; Huh, Y.-H. Texture evolution of rolled Mg-3Al-1Zn alloy undergoing a {10–12} twinning dominant strain path change. J. Alloy. Compd. 2015, 646, 573–579. [Google Scholar] [CrossRef]
- Sun, Q.; Fang, X.Y.; Wang, Y.C.; Tan, L.; Zhang, X.Y. Changes in misorientations of twin boundaries in deformed magnesium alloy. J. Mater. Sci. 2018, 53, 7834–7844. [Google Scholar] [CrossRef]
- Yu, H.H.; Li, C.Z.; Xin, Y.C.; Chapuis, A.; Huang, X.X.; Liu, Q. The mechanism for the high dependence of the Hall-Petch slope for twinning/slip on texture in Mg alloys. Acta Mater. 2017, 128, 313–326. [Google Scholar] [CrossRef]
- Ghaderi, A.; Barnett, M.R. Sensitivity of deformation twinning to grain size in titanium and magnesium. Acta Mater. 2011, 59, 7824–7839. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, J.K.; Kim, B.J.; Park, Y.B. The effect of grain size distribution on the shape of flow stress curves of Mg-3Al-1Zn under uniaxial compression. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2008, 488, 458–467. [Google Scholar] [CrossRef]
- Li, B.; Joshi, S.; Azevedo, K.; Ma, E.; Ramesh, K.T.; Figueiredo, R.B.; Langdon, T.G. Dynamic testing at high strain rates of an ultrafine-grained magnesium alloy processed by ECAP. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2009, 517, 24–29. [Google Scholar] [CrossRef]
- Zheng, R.X.; Bhattacharjee, T.; Shibata, A.; Sasaki, T.; Hono, K.; Joshi, M.; Tsuji, N. Simultaneously enhanced strength and ductility of Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained structures. Scr. Mater. 2017, 131, 1–5. [Google Scholar] [CrossRef]
- Guo, X.; Ma, C.; Zhao, L.; Chapuis, A.; Liu, Q.; Wu, P. Effect of pre-deformation on the activation stress of {10–12} twinning in Mg–3Al–1Zn alloy. Mater. Sci. Eng. A 2021, 800, 140384. [Google Scholar] [CrossRef]
- Xin, Y.C.; Wang, M.Y.; Zeng, Z.; Nie, M.G.; Liu, Q. Strengthening and toughening of magnesium alloy by {10–12} extension twins. Scr. Mater. 2012, 66, 25–28. [Google Scholar] [CrossRef]
- Song, B.; Xin, R.L.; Sun, L.Y.; Chen, G.; Liu, Q. Enhancing the strength of rolled ZK60 alloys via the combined use of twinning deformation and aging treatment. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2013, 582, 68–75. [Google Scholar] [CrossRef]
- Song, B.; Guo, N.; Liu, T.T.; Yang, Q.S. Improvement of formability and mechanical properties of magnesium alloys via pre-twinning: A review. Mater. Des. 2014, 62, 352–360. [Google Scholar] [CrossRef]
- Xin, Y.C.; Wang, M.Y.; Zeng, Z.; Huang, G.J.; Liu, Q. Tailoring the texture of magnesium alloy by twinning deformation to improve the rolling capability. Scr. Mater. 2011, 64, 986–989. [Google Scholar] [CrossRef]
- Barnett, M.R. Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31. J. Light Met. 2001, 1, 167–177. [Google Scholar] [CrossRef]
- Knezevic, M.; Levinson, A.; Harris, R.; Mishra, R.K.; Doherty, R.D.; Kalidindi, S.R. Deformation twinning in AZ31: Influence on strain hardening and texture evolution. Acta Mater. 2010, 58, 6230–6242. [Google Scholar] [CrossRef]
- Wang, B.S.; Xin, R.L.; Huang, G.J.; Liu, Q. Strain rate and texture effects on microstructural characteristics of Mg-3Al-1Zn alloy during compression. Scr. Mater. 2012, 66, 239–242. [Google Scholar] [CrossRef]
- Chen, P.; Wang, F.X.; Li, B. Dislocation absorption and transmutation at {10–12} twin boundaries in deformation of magnesium. Acta Mater. 2019, 164, 440–453. [Google Scholar] [CrossRef]
- Chen, P.; Li, B.; Culbertson, D.; Jiang, Y. Negligible effect of twin-slip interaction on hardening in deformation of a Mg-3Al-1Zn alloy. Mater. Sci. Eng. A 2018, 729, 285–293. [Google Scholar] [CrossRef]
- Hong, S.G.; Park, S.H.; Lee, C.S. Role of {10–12} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy. Acta Mater. 2010, 58, 5873–5885. [Google Scholar] [CrossRef]
- Sun, Q.; Xia, T.; Tan, L.; Tu, J.; Zhang, M.; Zhu, M.; Zhang, X. Influence of {10–12} twin characteristics on detwinning in Mg-3Al-1Zn alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2018, 735, 243–249. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, J.H.; Huh, Y.-H.; Hong, S.-G. Enhancing the effect of texture control using {10–12} twins by retarding detwinning activity in rolled Mg–3Al–1Zn alloy. Scr. Mater. 2013, 69, 797–800. [Google Scholar] [CrossRef]
- Li, Y.P.; Cui, Y.J.; Bian, H.K.; Sun, S.H.; Tang, N.; Chen, Y.; Liu, B.; Koizumi, Y.; Chiba, A. Detwining in Mg alloy with a high density of twin boundaries. Sci. Technol. Adv. Mater. 2014, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Jonas, J.J.; Luo, A.A.; Sachdev, A.K.; Godet, S. Influence of {10–12} extension twinning on the flow behavior of AZ31 Mg alloy. Mater. Sci. Eng. A 2007, 445–446, 302–309. [Google Scholar] [CrossRef]
- Yu, H.; Xin, Y.; Wang, M.; Liu, Q. Hall-Petch relationship in Mg alloys: A review. J. Mater. Sci. Technol. 2018, 34, 248–256. [Google Scholar] [CrossRef]
- Yu, H.H.; Xin, Y.C.; Chapuis, A.; Huang, X.X.; Xin, R.L.; Liu, Q. The different effects of twin boundary and grain boundary on reducing tension-compression yield asymmetry of Mg alloys. Sci. Rep. 2016, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.H.; Teng, J.; Wu, Y.; Sha, X.C.; Xiang, S.S.; Mao, S.C.; Yu, G.H.; Zhang, Z.; Zou, J.; Han, X.D. In situ atomic scale mechanisms of strain-induced twin boundary shear to high angle grain boundary in nanocrystalline Pt. Ultramicroscopy 2018, 195, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Zhang, X.Y.; Ren, Y.; Tu, J.; Liu, Q. Interfacial structure of {10–12} twin tip in deformed magnesium alloy. Scr. Mater. 2014, 90–91, 41–44. [Google Scholar] [CrossRef]
Yield Stress (MPa) | Stresses Corresponding to Different Strains (MPa) | Elongation (%) | ||||
---|---|---|---|---|---|---|
1% | 3% | 5% | 10% | |||
ERD0CA | 178 | 184 | 205 | 211 | 221 | 21 |
ERD0.9CA | 182 | 192 | 213 | 221 | 229 | 19 |
ERD1.3CA | 186 | 193 | 220 | 232 | 244 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Yang, P.; Yang, Z.; Sun, Q.; Tan, L. Towards Understanding Relationships between Tension Property and Twinning Boundaries in Magnesium Alloy. Metals 2021, 11, 745. https://doi.org/10.3390/met11050745
Bai J, Yang P, Yang Z, Sun Q, Tan L. Towards Understanding Relationships between Tension Property and Twinning Boundaries in Magnesium Alloy. Metals. 2021; 11(5):745. https://doi.org/10.3390/met11050745
Chicago/Turabian StyleBai, Jianhui, Pengfei Yang, Zhiyuan Yang, Qi Sun, and Li Tan. 2021. "Towards Understanding Relationships between Tension Property and Twinning Boundaries in Magnesium Alloy" Metals 11, no. 5: 745. https://doi.org/10.3390/met11050745
APA StyleBai, J., Yang, P., Yang, Z., Sun, Q., & Tan, L. (2021). Towards Understanding Relationships between Tension Property and Twinning Boundaries in Magnesium Alloy. Metals, 11(5), 745. https://doi.org/10.3390/met11050745