Solidification Pattern of Si-Alloyed, Inoculated Ductile Cast Irons, Evaluated by Thermal Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Chemical Composition
20.1(% As) + 9.60 (% Cr) + 71.7(% Sb)
3.2. Thermal (Cooling Curve) Analysis
1.0 (% Ni) + 1.8 (% Co) + 13.9 (% Al) − 17.7 (% Mo) − 10.5 (% Cr) − 9.3 (% Sn) −
5.2 (% Sb) − 6.1 (% W) − 3.7 (% Nb) − 14.8 (% V) − 80.3 (% B)
1.4 (% Cu) − 1.1 (% Ni) − 0.7 (% Co) − 1.8 (% Al) − 14.5 (% Mo) + 5.9% Cr) −
6.0 (% Sn) − 5.1 (% Sb) − 2.8 (% W) + 0 (% Nb) + 3.3 (% V) − 26.0 (% B)
4. Conclusions
- Chemical analysis focuses not only on the base elements but also on the minor elements, such as their cumulative effects such as the pearlite formation sensitiveness, antinodularizing action and on the values of eutectic temperatures in stable (graphitic) and metastable (carbidic) Fe-C-Si-Xi systems.
- Silicon is an important influencing factor, but the base and minor elements affect the equilibrium eutectic temperatures, inclusively at high Si-content, much more in the Fe-C-Si-Xi stable system (ΔTst = 15–20 °C) than in the metastable system (ΔTmst = 5–10 °C), comparing their calculations with only the Si effect (Fe-C-Si system), where the highest values resulted.
- It is found that higher is the pearlite formation potential (Px), the higher is the affectation of Tst and Tmst, obtained only as a Si effect: from 4–5 °C for Tmst and 13–15 °C for Tst in high purity cast iron (Px < 0.5) up to 10 °C for Tmst and 20 °C for Tst, for Px > 2.0.
- Elements known to have an antinodularizing action, with cumulative effect expressed by K factor, decrease Tmst (from 5–10 °C up to 4–5 °C) by transition from a medium pure cast iron (K < 1.0) to a lower purity cast iron (K = 1.5–2.0), without a conclusive evolution for Tst.
- Both Si-content and inoculation act as favorable influencing factors, by increasing the representative temperatures and decreasing the undercooling degrees for the eutectic reaction and at the end of solidification, but at a different power depending on the considered temperature and the Si-alloying grade.
- The highest positive effect of inoculation is visible in non-Si alloyed cast irons (2.5% Si): 9–15 °C for the eutectic reaction and 3 to 4 times increased at the end of solidification (37–47 °C). Increased Si content decreases the inoculation power to 7–9 °C for a low alloying grade (up to 3.5% Si), with the lowest contribution at more than 4.5% Si (0.3–2.0 °C).
- Si favors increasing of the eutectic interval (Tst–Tmst), and, at the same time, the increasing of temperatures for the eutectic reaction and, at the end of solidification, with other elements contribution, as well. As a result, the undercooling behavior during solidification will be influenced by both effects.
- The highest undercooling characterizes the non-Si alloyed cast irons, while the lower limit of Si-alloyed cast irons are characterized by 1.4–1.6 times lower eutectic undercooling, with 2–3 times higher beneficial effect for the higher Si level. The positive effect of Si-alloying is higher for non-inoculated cast irons, and especially at the end of solidification.
- Inoculation has an important contribution to reduce the undercooling degree, being very important for the non-Si alloying, visible for less than 3.5% Si, but with only a small contribution for more than 4.5% Si. A special remark for the undercooling at the end of solidification, which becomes positive for more than 4% Si non-inoculated and 3.2% Si inoculated ductile cast irons.
- 2.5–3.5% Si ductile cast irons are more sensitive to high solidification undercooling (but with a higher efficiency of inoculation), comparing to 4.5–5.5% Si cast irons, at a lower undercooling level (but also at a lower inoculation effect). In high Si-ductile cast irons (especially for more than 4% Si) the main objective of inoculation is not carbides avoiding, but the improvement of the nodular graphite compactness degree (affected by Si). This could be important especially in the furan resin molding technique, where Sulphur in P-toluenesulphonic acid (PTSA), usually is used as the hardener, has been identified as an important factor causing graphite degeneration [23].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stets, W.; Loblich, H.; Gassner, G.; Schumacher, P. Solution Strengthened Ferritic Ductile Cast Iron According DIN EN1563:2012–Properties, Production and Application. In Proceedings of the “Keith Millis” Symposium on Ductile Iron, Nashville, TN, USA, 15–17 October 2013; pp. 283–292. [Google Scholar]
- Stan, S.; Riposan, I.; Chisamera, M.; Barstow, M. Solidification Pattern of Silicon Alloyed Ductile Cast Irons. In Proceedings of the 122nd AFS Metalcasting Congress, Fort Worth, TX, USA, 3–5 April 2018; pp. 18–22. [Google Scholar]
- EN 1563 Founding—Spheroidal Graphite Cast Irons. Available online: https://www.en-standard.eu/csn-en-1563-founding-spheroidal-graphite-cast-irons/ (accessed on 13 March 2021).
- Automotive Ductile Iron Castings for High Temperature Applications J2582_200406. Available online: https://www.sae.org/standards/content/j2582_200406/ (accessed on 13 March 2021).
- Riposan, I.; Skaland, T. Modification and Inoculation of Cast Iron. In Cast Iron Science and Technology Handbook; Stefanescu, D.M., Ed.; American Society of Materials: Materials Park, OH, USA, 2017; pp. 160–176. [Google Scholar]
- Stefanescu, D.M. Thermal Analysis-Theory and Applications in Metalcasting. Int. J. Metalcasting 2015, 9, 7–22. [Google Scholar] [CrossRef]
- Sparkman, D. Microstructure by Thermal Analysis. AFS Trans. 2011, 119, 413–419. [Google Scholar]
- Cojocaru, A.M.; Riposan, I.; Stan, S. Solidification Influence in the Control of Inoculation Effects in Ductile Cast Irons by Thermal Analysis. J. Therm. Anal. Calorim. 2019, 138, 2131–2143. [Google Scholar] [CrossRef]
- Anca, D.; Chisamera, M.; Stan, S.; Stan, I.; Riposan, I. Sulfur and Oxygen Effects on High-Si Ductile Iron Casting Skin Formation. Coatings 2020, 10, 618. [Google Scholar] [CrossRef]
- Anca, D.; Chisamera, M.; Stan, S.; Riposan, I. Graphite Degeneration in High Si, Mg-Treated Iron Castings—Sulfur and Oxygen Addition Effects. Int. J. Met. 2019, 14, 663–671. [Google Scholar] [CrossRef]
- Riposan, I.; Stefan, E.; Stan, S.; Pana, N.R.; Chisamera, M. Effects of Inoculation on Structure Characteristics of High Silicon Ductile Cast Irons in Thin Wall Castings. Metals 2020, 10, 1091. [Google Scholar] [CrossRef]
- QuiK-Cup® QuiK-Lab® E Thermal Analysis of Cast Iron. Available online: https://www.heraeus.com/media/media/hen/media_hen/products_hen/iron/QuikLabE_QuikCup_EN_lowres.pdf (accessed on 13 March 2021).
- Thielemann, T. Zur Wirkung van Spurenelementen in Gusseisen mit Kugelgraphit [Effects of trace elements in nodular graphite cast irons]. Giessereitechnik 1970, 16, 16–24. [Google Scholar]
- Dommaaschk, C. Chances and Limits of High Silicon Ductile Iron. In Proceedings of the WFO Technical Forum, Gauteng, Africa, 14–17 March 2017. [Google Scholar]
- Hammersberg, P.; Hamberg, K.; Bjorkegren, L.E.; Lindkvist, J.; Borgstrom, H. Sensitivity to Variation of Tensile Properties of High Silicon Ductile Iron. Mater. Sci. Forum 2018, 925, 280–287. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J. Colour Metallurgy of Cast Iron. China Foundry 2009, 6, 57–69. [Google Scholar]
- Sillen, R.V. Novacast Technologies. 2006. Available online: www.novacast.se (accessed on 10 December 2006).
- Kanno, T.; Iwami, Y.; Kang, I. Prediction of Graphite Nodule Count and Shrinkage Tendency in Ductile Cast Iron With 1 Cup Thermal Analysis. Int. J. Metalcast. 2017, 11, 94–100. [Google Scholar] [CrossRef]
- Kanno, T.; Fukuda, Y.; Morinaka, M.; Nakae, H. Effect of Alloying Elements on Graphite and Cementite Eutectic Temperature of Cast Iron. J. JFS. 1998, 70, 465–470. [Google Scholar]
- Stan, S.; Riposan, I.; Chisamera, M.; Stan, I. Solidification Characteristics of Silicon Alloyed Ductile Cast Irons. J. Mater. Eng. Perform. 2019, 28, 278–286. [Google Scholar] [CrossRef]
- Borsato, T.; Ferro, P.; Berto, F.; Carollo, C. Effect of Solidification Time on Microstructural, Mechanical and Fatigue Properties of Solution Strengthened Ferritic Ductile Iron. Metals 2019, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Gorny, M.; Kawalec, M.; Sikora, G.; Olejnik, E.; Lopez, H. Primary Structure and Graphite nodules in Thin-Walled High-Nickel Ductile Iron Castings. Metals 2018, 8, 649. [Google Scholar] [CrossRef] [Green Version]
- Ivan, N.; Chisamera, M.; Riposan, I. Graphite Degeneration In the Surface Layer of Ductile Iron Castings. Int. J. Cast Met. Res. 2013, 26, 138–142. [Google Scholar] [CrossRef]
Pr * | Si Content (%) | Mg-Treatment ** (Nodularization) | Inoculation (Graphitization) |
---|---|---|---|
I | 2.48 | 2.0 wt.% FeSiCaMgRE Tundish Cover Ladle | 0.5 wt.% Ca, Ce, S, O-FeSi Pouring Ladle |
II | 2.55 | 2.0 wt.% FeSiCaMgRE Tundish Cover Ladle | 0.3 wt.% Ca, Ce, S, O-FeSi Pouring Ladle |
III | 3.15 | 2.0 wt.% FeSiCaMgRE Tundish Cover Ladle | 0.5 wt.% Ca, Ba, Al-FeSi Pouring Ladle |
IV | 3.44 | 2.5 wt.% FeSiCaMgRE Tundish Cover Ladle | 0.5 wt.% Ca, Ba, Al-FeSi Pouring Ladle |
V | 4.55 | 1.5 wt.% FeSiCaMgRE Tundish Cover Ladle | 0.1 wt.% Ca, Ba, Al-FeSi In-mold, Quick-CupTM |
VI | 5.25 | 1.5 wt.% FeSiCaMgRE Tundish Cover Ladle | 0.1 wt.% Ca, Ba, Al-FeSi In-mold, Quick-CupTM |
Pr * | Chemical Composition (wt.%) | Chemistry Control Factors | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | Si | Mn | P | S | Al | Mg | CE ** (%) | K *** | Px **** | |
I | 3.32 | 2.48 | 0.50 | 0.04 | 0.011 | 0.014 | 0.045 | 4.11 | 0.89 | 2.35 |
II | 3.20 | 2.55 | 0.38 | 0.013 | 0.015 | 0.014 | 0.032 | 4.03 | 0.90 | 1.94 |
III | 3.65 | 3.15 | 0.10 | 0.013 | 0.004 | 0.002 | 0.049 | 4.60 | 1.38 | 0.47 |
IV | 3.37 | 3.44 | 0.44 | 0.05 | 0.020 | 0.015 | 0.032 | 4.43 | 0.87 | 0.23 |
V | 3.33 | 4.55 | 0.22 | 0.04 | 0.012 | 0.0054 | 0.035 | 4.65 | 1.59 | 1.72 |
VI | 3.46 | 5.25 | 0.22 | 0.04 | 0.010 | 0.0065 | 0.045 | 5.05 | 1.66 | 1.52 |
Pr * | Chemical Composition ** (wt.%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ti | As | Sn | Sb | Pb | Bi | V | Cu | Ni | Cr | Mo | |
I | 0.013 | 0.003 | 0.004 | 0.001 | 0.0002 | 0.002 | 0.004 | 0.055 | 0.044 | 0.048 | 0.010 |
II | 0.013 | 0.003 | 0.005 | 0.0009 | 0.0002 | 0.002 | 0.005 | 0.06 | 0.040 | 0.050 | 0.020 |
III | 0.005 | 0.005 | 0.005 | 0.005 | 0.002 | 0.002 | 0.016 | 0.02 | 0.072 | 0.080 | 0.050 |
IV | 0.0063 | 0.006 | 0.005 | 0.0015 | 0.0002 | 0.002 | 0.004 | 0.067 | 0.050 | 0.078 | 0.010 |
V | 0.0067 | 0.019 | 0.015 | 0.040 | 0.003 | 0.001 | 0.008 | 0.17 | 0.10 | 0.050 | 0.070 |
VI | 0.0073 | 0.020 | 0.013 | 0.019 | 0.004 | 0.0009 | 0.011 | 0.11 | 0.064 | 0.094 | 0.042 |
Pr * | Si (%) | Tst (°C) | Tmst (°C) | ΔTs = Tst − Tmst (°C) | ΔTst (°C) (S–K) | ΔTmst (°C) (S–K) | |||
---|---|---|---|---|---|---|---|---|---|
S ** | K *** | S | K | S | K | ||||
I | 2.48 | 1169.60 | 1151.80 | 1117.20 | 1106.60 | 52.40 | 45.20 | 17.80 | 10.60 |
II | 2.55 | 1170.09 | 1153.40 | 1116.40 | 1106.70 | 53.69 | 46.70 | 17.55 | 9.70 |
III | 3.15 | 1174.11 | 1161.03 | 1109.20 | 1105.01 | 64.91 | 56.02 | 13.08 | 4.19 |
IV | 3.44 | 1176.05 | 1160.71 | 1105.72 | 1100.15 | 70.33 | 60.56 | 15.34 | 5.57 |
V | 4.55 | 1183.49 | 1165.72 | 1092.40 | 1086.21 | 91.09 | 79.51 | 17.77 | 6.19 |
VI | 5.25 | 1188.18 | 1169.17 | 1084.00 | 1079.11 | 104.18 | 90.06 | 19.01 | 4.89 |
Pr * | Si (%) | Iron | TEU (°C) | TER (°C) | TES (°C) | ΔTm (°C) | ΔT1 (°C) | ΔT2 (°C) | ΔT3 (°C) | ΔTEU (°C) | ΔTES (°C) |
---|---|---|---|---|---|---|---|---|---|---|---|
I | 2.48 | UI ** | 1128.4 | 1129.9 | 1050.9 | 23.4 | 21.8 | 23.3 | −55.7 | 14.0 | 36.6 |
Inoc *** | 1142.4 | 1145.1 | 1087.5 | 9.4 | 35.8 | 38.5 | −19.1 | ||||
II | 2.55 | UI | 1136.6 | 1136.8 | 1050.4 | 16.8 | 28.9 | 30.1 | −56.3 | 9.2 | 47.2 |
Inoc | 1145.8 | 1147.7 | 1097.6 | 7.6 | 39.1 | 41.0 | −9.1 | ||||
III | 3.15 | Inoc | 1144.53 | 1156.01 | 1107.17 | 16.5 | 39.52 | 51.0 | 2.16 | ||
IV | 3.44 | UI | 1138.34 | 1141.16 | 1089.03 | 22.37 | 38.19 | 41.01 | −11.1 | 7.63 | 9.14 |
Inoc | 1145.97 | 1150.07 | 1098.17 | 14.74 | 45.82 | 49.92 | −1.98 | ||||
V | 4.55 | UI | 1156.1 | 1156.6 | 1104.4 | 9.62 | 69.89 | 70.39 | 18.9 | 1.8 | 2.3 |
Inoc | 1157.9 | 1158.6 | 1106.7 | 7.82 | 71.69 | 72.39 | 20.5 | ||||
VI | 5.25 | UI | 1156.7 | 1158.9 | 1106.2 | 12.47 | 77.59 | 79.79 | 27.09 | 0.6 | 0.3 |
Inoc | 1157.3 | 1158.9 | 1106.5 | 11.87 | 78.19 | 79.79 | 27.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stan, I.; Anca, D.; Stan, S.; Riposan, I. Solidification Pattern of Si-Alloyed, Inoculated Ductile Cast Irons, Evaluated by Thermal Analysis. Metals 2021, 11, 846. https://doi.org/10.3390/met11050846
Stan I, Anca D, Stan S, Riposan I. Solidification Pattern of Si-Alloyed, Inoculated Ductile Cast Irons, Evaluated by Thermal Analysis. Metals. 2021; 11(5):846. https://doi.org/10.3390/met11050846
Chicago/Turabian StyleStan, Iuliana, Denisa Anca, Stelian Stan, and Iulian Riposan. 2021. "Solidification Pattern of Si-Alloyed, Inoculated Ductile Cast Irons, Evaluated by Thermal Analysis" Metals 11, no. 5: 846. https://doi.org/10.3390/met11050846
APA StyleStan, I., Anca, D., Stan, S., & Riposan, I. (2021). Solidification Pattern of Si-Alloyed, Inoculated Ductile Cast Irons, Evaluated by Thermal Analysis. Metals, 11(5), 846. https://doi.org/10.3390/met11050846