Temperature Dependent Stress–Strain Behavior and Martensite Stabilization in Magnetic Shape Memory Ni51.1Fe16.4Ga26.3Co6.2 Single Crystal
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Sozinov, A.; Lanska, N.; Soroka, A.; Zou, W. 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite. Appl. Phys. Lett. 2013, 102, 021902. [Google Scholar] [CrossRef]
- Müllner, P.; Chernenko, V.A.; Kostorz, G. Large cyclic magnetic-field-induced deformation in orthorhombic (14M) Ni–Mn–Ga martensite. J. Appl. Phys. 2004, 95, 1531–1536. [Google Scholar] [CrossRef]
- Morito, H.; Fujita, A.; Oikawa, K.; Ishida, K.; Fukamichi, K.; Kainuma, R. Stress-assisted magnetic-field-induced strain in Ni–Fe–Ga–Co ferromagnetic shape memory alloys. Appl. Phys. Lett. 2007, 90, 062505. [Google Scholar] [CrossRef]
- Pagounis, E.; Muellner, P. Materials and Actuator Solutions for Advanced Magnetic Shape Memory Devices. In Proceedings of the ACTUATOR 2018, 16th International Conference on New Actuators, Bremen, Germany, 25–27 June 2018; pp. 1–7. [Google Scholar]
- Heczko, O. Magnetic shape memory effect and highly mobile twin boundaries. Mater. Sci. Technol. UK 2014, 30, 1559–1578. [Google Scholar] [CrossRef]
- Kustov, S.; Pons, J.; Cesari, E.; Van Humbeeck, J. Chemical and mechanical stabilization of martensite. Acta Mater. 2004, 52, 4547–4559. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Fernandes, F.M.B.; Schell, N.; Miranda, R.M. Martensite stabilization during superelastic cycling of laser welded NiTi plates. Mater. Lett. 2016, 171, 273–276. [Google Scholar] [CrossRef] [Green Version]
- Picornell, C.; Pons, J.; Cesari, E.; Dutkiewicz, J. Thermal characteristics of Ni–Fe–Ga–Mn and Ni–Fe–Ga–Co ferromagnetic shape memory alloys. Intermetallics 2008, 16, 751–757. [Google Scholar] [CrossRef]
- Niendorf, T.; Krooß, P.; Somsen, C.; Eggeler, G.; Chumlyakov, Y.I.; Maier, H.J. Martensite aging-Avenue to new high temperature shape memory alloys. Acta Mater. 2015, 89, 298–304. [Google Scholar] [CrossRef]
- Samy, N.M.; Daróczi, L.; Tóth, L.Z.; Panchenko, E.; Chumlyakov, Y.; Surikov, N.; Beke, D.L. Effect of stress-induced martensite stabilization on acoustic emission characteristics and the entropy of martensitic transformation in shape memory Ni51Fe18Ga27Co4 single crystal. Metals 2020, 10, 534. [Google Scholar] [CrossRef] [Green Version]
- Picornell, C.; Pons, J.; Cesari, E. Stabilisation of martensite by applying compressive stress in Cu-Al-Ni single crystals. Acta Mater. 2001, 49, 4221–4230. [Google Scholar] [CrossRef]
- Roytburd, A.L. Intrinsic hysteresis of superelastic deformation. Mater. Sci. Forum 2000, 327–328, 389–392. [Google Scholar] [CrossRef]
- Singh, S.; Kushwaha, P.; Scheibel, F.; Liermann, H.P.; Barman, S.R.; Acet, M.; Felser, C.; Pandey, D. Residual stress induced stabilization of martensite phase and its effect on the magnetostructural transition in Mn-rich Ni-Mn-In/Ga magnetic shape-memory alloys. Phys. Rev. B-Condens. Matter Mater. Phys. 2015, 92, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Panchenko, E.; Eftifeeva, A.; Chumlyakov, Y.; Gerstein, G.; Maier, H.J. Two-way shape memory effect and thermal cycling stability in Co35Ni35Al30 single crystals by low-temperature martensite ageing. Scr. Mater. 2018, 150, 18–21. [Google Scholar] [CrossRef]
- Timofeeva, E.E.; Panchenko, E.Y.; Pichkaleva, M.V.; Tagiltsev, A.I.; Chumlyakov, Y.I. The effect of stress-induced martensite ageing on the two-way shape memory effect in Ni53Mn25Ga22 single crystals. Mater. Lett. 2018, 228, 490–492. [Google Scholar] [CrossRef]
- Panchenko, E.; Chumlyakov, Y.; Maier, H.J.; Timofeeva, E.; Karaman, I. Tension/compression asymmetry of functional properties in [001]-oriented ferromagnetic NiFeGaCo single crystals. Intermetallics 2010, 18, 2458–2463. [Google Scholar] [CrossRef]
- Li, P.; Karaca, H.E.; Chumlyakov, Y.I. Orientation dependent compression behavior of Co35Ni35Al30 single crystals. J. Alloys Compd. 2017, 718, 326–334. [Google Scholar] [CrossRef] [Green Version]
- Chernenko, V.A.; Villa, E.; Besseghini, S.; Barandiarán, J.M. Giant two-way shape memory effect in high-temperature Ni–Mn–Ga single crystal. Phys. Procedia 2010, 10, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Panchenko, E.; Timofeeva, E.; Eftifeeva, A.; Osipovich, K.; Surikov, N.; Chumlyakov, Y.; Gerstein, G.; Maier, H.J. Giant rubber-like behavior induced by martensite aging in Ni51Fe18Ga27Co4 single crystals. Scr. Mater. 2019, 162, 387–390. [Google Scholar] [CrossRef]
- Chernenko, V.A.; Pons, J.; Cesari, E.; Zasimchuk, I.K. Transformation behaviour and martensite stabilization in the ferromagnetic Co–Ni–Ga Heusler alloy. Scr. Mater. 2004, 50, 225–229. [Google Scholar] [CrossRef]
- Masdeu, F.; Pons, J.; Chumlyakov, Y.; Cesari, E. Two-way shape memory effect in Ni49Fe18Ga27Co6 ferromagnetic shape memory single crystals. Mater. Sci. Eng. A 2021, 805, 140543. [Google Scholar] [CrossRef]
- Masdeu, F.; Pons, J.; Cesari, E.; Kustov, S.; Chumlyakov, Y.I. Magnetic-field-induced strain assisted by tensile stress in L10 martensite of a Ni–Fe–Ga–Co alloy. Appl. Phys. Lett. 2008, 93, 152503. [Google Scholar] [CrossRef]
- Biswas, A.; Singh, G.; Sarkar, S.K.; Krishnan, M.; Ramamurty, U. Hot deformation behavior of Ni-Fe-Ga-based ferromagnetic shape memory alloy-A study using processing map. Intermetallics 2014, 54, 69–78. [Google Scholar] [CrossRef]
- Pataky, G.J.; Ertekin, E.; Sehitoglu, H. Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl. Acta Mater. 2015, 96, 420–427. [Google Scholar] [CrossRef]
- Xiao, F.; Jin, M.; Liu, J.; Jin, X. Elastocaloric effect in Ni50Fe19Ga27Co4 single crystals. Acta Mater. 2015, 96, 292–300. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, D.; Liu, J. Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.K.; Biswas, A.; Babu, P.D.; Kaushik, S.D.; Srivastava, A.; Siruguri, V.; Krishnan, M. Effect of partial substitution of Fe by Mn in Ni55Fe19Ga26 on its microstructure and magnetic properties. J. Alloys Compd. 2014, 586, 515–523. [Google Scholar] [CrossRef]
- Barandiarán, J.M.; Chernenko, V.A.; Lázpita, P.; Gutiérrez, J.; Feuchtwanger, J. Effect of martensitic transformation and magnetic field on transport properties of Ni-Mn-Ga and Ni-Fe-Ga Heusler alloys. Phys. Rev. B 2009, 80, 104404. [Google Scholar] [CrossRef]
- Liu, J.; Scheerbaum, N.; Hinz, D.; Gutfleisch, O. Martensitic transformation and magnetic properties in Ni–Fe–Ga–Co magnetic shape memory alloys. Acta Mater. 2008, 56, 3177–3186. [Google Scholar] [CrossRef]
- Sofronie, M.; Tolea, F.; Kuncser, V.; Valeanu, M. Martensitic transformation and accompanying magnetic changes in Ni-Fe-Ga-Co alloys. J. Appl. Phys. 2010, 107, 1–6. [Google Scholar] [CrossRef]
- Nikolaev, V.I.; Yakushev, P.N.; Malygin, G.A.; Averkin, A.I.; Pulnev, S.A.; Zograf, G.P.; Kustov, S.B.; Chumlyakov, Y.I. Influence of partial shape memory deformation on the burst character of its recovery in heated Ni–Fe–Ga–Co alloy crystals. Tech. Phys. Lett. 2016, 42, 399–402. [Google Scholar] [CrossRef]
- Oikawa, K.; Saito, R.; Anzai, K.; Ishikawa, H.; Sutou, Y.; Omori, T.; Yoshikawa, A.; Chernenko, V.A.; Besseghini, S.; Gambardella, A.; et al. Elastic and Superelastic Properties of NiFeCoGa Fibers Grown by Micro-Pulling-Down Method. Mater. Trans. 2009, 50, 934–937. [Google Scholar] [CrossRef] [Green Version]
- Kosogor, A.; L’vov, V.A.; Chernenko, V.A.; Villa, E.; Barandiaran, J.M.; Fukuda, T.; Terai, T.; Kakeshita, T. Hysteretic and anhysteretic tensile stress-strain behavior of Ni-Fe(Co)-Ga single crystal: Experiment and theory. Acta Mater. 2014, 66, 79–85. [Google Scholar] [CrossRef]
- Liu, N.; Huang, W.M. DSC study on temperature memory effect of NiTi shape memory alloy. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2006, 16, s37–s41. [Google Scholar] [CrossRef]
- Hamilton, R.; Efstathiou, C.; Sehitoglu, H.; Chumlyakov, Y. Thermal and stress-induced martensitic transformations in NiFeGa single crystals under tension and compression. Scr. Mater. 2006, 54, 465–469. [Google Scholar] [CrossRef]
- Panchenko, E.; Timofeeva, E.; Pichkaleva, M.; Tokhmetova, A.; Surikov, N.; Tagiltsev, A.; Chumlyakov, Y. Effect of Stress-Induced Martensite Aging on Martensite Variant Reorientation Strain in NiMnGa Single Crystals. Shape Mem. Superelasticity 2020, 6, 29–34. [Google Scholar] [CrossRef]
- L’vov, V.A.; Rudenko, A.A.; Chernenko, V.A.; Cesari, E.; Pons, J.; Kanomata, T. Stress-induced martensitic transformation and superelasticity of alloys: Experiment and theory. Mater. Trans. 2005, 46, 790–797. [Google Scholar] [CrossRef] [Green Version]
- Karaca, H.E.; Karaman, I.; Lagoudas, D.C.; Maier, H.J.; Chumlyakov, Y.I. Recoverable stress-induced martensitic transformation in a ferromagnetic CoNiAl alloy. Scr. Mater. 2003, 49, 831–836. [Google Scholar] [CrossRef]
- Dadda, J.; Maier, H.J.; Karaman, I.; Karaca, H.E.; Chumlyakov, Y.I. Pseudoelasticity at elevated temperatures in [001] oriented Co49Ni21Ga30 single crystals under compression. Scr. Mater. 2006, 55, 663–666. [Google Scholar] [CrossRef]
- Villa, E.; Agilar-Ortiz, C.O.; Álvarez-Alonso, P.; Camarillo, J.P.; Lara-Rodriguez, G.A.; Flores-Zúñiga, H.; Chernenko, V.A. Shape memory behavior of Ni-Fe-Ga and Ni-Mn-Sn ribbons. MATEC Web Conf. 2015, 33. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Dai, L.; Cullen, J.; Wuttig, M. Magnetic and Elastic Properties of Ni49.0Mn23.5Ga27.5 Premartensite. Metall. Mater. Trans. A 2007, 38, 745–751. [Google Scholar] [CrossRef]
- Oikawa, K.; Omori, T.; Sutou, Y.; Morito, H.; Kainuma, R.; Ishida, K. Phase Equilibria and Phase Transition of the Ni–Fe–Ga Ferromagnetic Shape Memory Alloy System. Metall. Mater. Trans. A 2007, 38, 767–776. [Google Scholar] [CrossRef]
Temperature of SS Test Cycle | Ms (°C) | Mf (°C) | ΔHcooling (J/g) | As (°C) | Af (°C) | ΔHheating (J/g) | |
---|---|---|---|---|---|---|---|
As < T | before the tests | 62 | 50 | 3.4 | 69 | 92 | 2.5 |
after SS 22 °C | 61 | 48 | 3.1 | 101 | 103 | 3.1 | |
after SS 40 °C | 59 | 47 | 3.0 | 102 | 103 | 3.1 | |
after SS 60 °C | 59 | 47 | 3.0 | 101 | 102 | 3.0 | |
As < T < Af | after SS 80 °C | 59 | 46 | 3.0 | 99 | 100 | 3.1 |
after SS 90 °C | 58 | 46 | 3.1 | 98 | 100 | 3.1 | |
T > Af | after SS 100 °C | 59 | 46 | 3.2 | 65 | 77 | 3.3 |
after SS 120 °C | 58 | 47 | 3.4 | 62 | 76 | 3.1 | |
after SS 130 °C | 58 | 47 | 3.4 | 63 | 77 | 3.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lázpita, P.; Villa, E.; Villa, F.; Chernenko, V. Temperature Dependent Stress–Strain Behavior and Martensite Stabilization in Magnetic Shape Memory Ni51.1Fe16.4Ga26.3Co6.2 Single Crystal. Metals 2021, 11, 920. https://doi.org/10.3390/met11060920
Lázpita P, Villa E, Villa F, Chernenko V. Temperature Dependent Stress–Strain Behavior and Martensite Stabilization in Magnetic Shape Memory Ni51.1Fe16.4Ga26.3Co6.2 Single Crystal. Metals. 2021; 11(6):920. https://doi.org/10.3390/met11060920
Chicago/Turabian StyleLázpita, Patricia, Elena Villa, Francesca Villa, and Volodymyr Chernenko. 2021. "Temperature Dependent Stress–Strain Behavior and Martensite Stabilization in Magnetic Shape Memory Ni51.1Fe16.4Ga26.3Co6.2 Single Crystal" Metals 11, no. 6: 920. https://doi.org/10.3390/met11060920
APA StyleLázpita, P., Villa, E., Villa, F., & Chernenko, V. (2021). Temperature Dependent Stress–Strain Behavior and Martensite Stabilization in Magnetic Shape Memory Ni51.1Fe16.4Ga26.3Co6.2 Single Crystal. Metals, 11(6), 920. https://doi.org/10.3390/met11060920