The Thermal Properties of L12 Phases in Aluminum Enhanced by Alloying Elements
Abstract
:1. Introduction
2. Theoretical Methods
3. Results and Discussion
3.1. Thermal Properties
3.2. Electronic Structure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, H. An overview of the development of Al-Si-alloy based material for engine applications. J. Mater. Eng. Perform. 2003, 12, 288–297. [Google Scholar] [CrossRef]
- Cheng, S.; Zhao, Y.H.; Zhu, Y.T.; Ma, E. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater. 2007, 55, 5822–5832. [Google Scholar] [CrossRef]
- Das, S. Development of aluminium alloy composites for engineering applications. Trans. Indian Inst. Met. 2004, 57, 325–334. [Google Scholar]
- Knipling, K.E.; Dunand, D.C.; Seidman, D.N. Criteria for developing castable, creep-resistant aluminum-based alloys—A review. J. Alloys Compd. 2006, 97, 246–265. [Google Scholar] [CrossRef] [Green Version]
- Mishra, R.S.; Ma, Z.Y. Friction stir welding and processing. Mater. Sci. Eng. R 2005, 50, 1–78. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, Y.; Hao, Y. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing. J. Mater. Sci. Technol. 2018, 34, 73–91. [Google Scholar] [CrossRef]
- Duan, Y.H.; Sun, Y.; Peng, M.J.; Zhou, S.G. Ab-initio investigations on elastic properties in L12 structure Al3Sc and Al3Y under high pressure. J. Alloys Compd. 2014, 585, 587–593. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, W. First-principles investigations on vibrational, thermodynamic, mechanical properties and thermal conductivity of L12 Al3X (X = Sc, Er, Tm, Yb) intermetallics. Phys. Scripta 2015, 90, 065701. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, K.; Wen, S.; Huang, H.; Nie, Z.; Zhou, D. The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy. J. Alloys Compd. 2014, 610, 27–34. [Google Scholar] [CrossRef]
- Jahnátek, M.; Krajčí, M.; Hafner, J. Response of trialuminides to [110] uniaxial loading: An ab initio study for Al3(Sc, Ti, V). Phys. Rev. B 2007, 76, 014110. [Google Scholar] [CrossRef]
- Booth-Morrison, C.; Dunand, D.C.; Seidman, D.N. Coarsening resistance at 400 °C of precipitation-strengthened Al–Zr–Sc–Er alloys. Acta Mater. 2011, 59, 7029–7042. [Google Scholar] [CrossRef]
- Watanabe, C.; Kondo, T.; Monzen, R. Coarsening of Al3Sc precipitates in an Al-0.28 wt pct Sc alloy. Metall. Mater. Trans. A 2004, 35, 3003–3008. [Google Scholar] [CrossRef]
- Karnesky, R.A.; Van Dalen, M.E.; Dunand, D.C.; Seidman, D.N. Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al–0.08 at.% Sc alloy. Scripta Mater. 2006, 55, 437–440. [Google Scholar] [CrossRef]
- Van Dalen, M.E.; Karnesky, R.A.; Cabotaje, J.R.; Dunand, D.C.; Seidman, D.N. Erbium and ytterbium solubilities and diffusivities in aluminum as determined by nanoscale characterization of precipitates. Acta Mater. 2009, 57, 4081–4089. [Google Scholar] [CrossRef]
- Mao, Z.; Seidman, D.N.; Wolverton, C.J.A.M. First-principles phase stability, magnetic properties and solubility in aluminum–rare-earth (Al–RE) alloys and compounds. Acta Mater. 2011, 59, 3659–3666. [Google Scholar] [CrossRef]
- Peng, G.; Chen, K.; Fang, H.; Chen, S. Effect of Cr and Yb additions on microstructure and properties of low copper Al–Zn–Mg–Cu–Zr alloy. Mater. Des. (1980–2015) 2012, 36, 279–283. [Google Scholar] [CrossRef]
- Czerwinski, F. Thermal stability of aluminum alloys. Materials 2020, 13, 3441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.D.; Jiang, W. Lattice stabilities, mechanical and thermodynamic properties of Al3Tm and Al3Lu intermetallics under high pressure from first-principles calculations. Chin. Phys. B. 2015, 25, 026301. [Google Scholar] [CrossRef]
- Li, D.L.; Chen, P.; Yi, J.X.; Tang, B.Y.; Peng, L.M.; Ding, W.J. Ab initio study on the thermal properties of the fcc Al3Mg and Al3Sc alloys. J. Phys. D Appl. Phys. 2009, 42, 225407. [Google Scholar] [CrossRef]
- Pan, R.K.; Wang, H.C.; Shi, T.T.; Tian, X.; Tang, B.Y. Thermal properties and thermoelasticity of L12 ordered Al3RE (RE= Er, Tm, Yb, Lu) phases: A first-principles study. Mater. Des. 2016, 102, 100–105. [Google Scholar] [CrossRef]
- Kerkove, M.A.; Wood, T.D.; Sanders, P.G.; Kampe, S.L.; Swenson, D. The diffusion coefficient of scandium in dilute aluminum-scandium alloys. Metall. Mater. Trans. A 2014, 45, 3800–3805. [Google Scholar] [CrossRef]
- Rokhlin, L.L.; Bochvar, N.R.; Dobatkina, T.V.; Leont’ev, V.G. Al-rich portion of the Al-Hf phase diagram. Russ. Metall. (Met.) 2009, 3, 258–262. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Arya, A.; Carter, E.A. Structure, bonding, and adhesion at the TiC (100)/Fe (110) interface from first principles. J. Chem. Phys. 2003, 118, 8982–8996. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Wang, Y. Erratum: Accurate and simple analytic representation of the electron-gas correlation energy. [Phys. Rev. B 45, 13244 (1992)]. Phys. Rev. B 2018, 98, 079904. [Google Scholar] [CrossRef] [Green Version]
- Anisimov, V.I.; Zaanen, J.; Andersen, O.K. Band theory and Mott insulators: Hubbard U instead of Stoner, I. Phys. Rev. B 1991, 44, 943. [Google Scholar] [CrossRef] [Green Version]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, J.L.; Ganduglia-Pirovano, M.V.; Sauer, J.; Bayer, V.; Kresse, G. Hybrid functionals applied to rare-earth oxides: The example of ceria. Phys. Rev. B 2007, 75, 045121. [Google Scholar] [CrossRef]
- Hay, P.J.; Martin, R.L.; Uddin, J.; Scuseria, G.E. Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional. J. Chem. Phys. 2006, 125, 034712. [Google Scholar] [CrossRef]
- Topsakal, M.; Wentzcovitch, R.M. Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE= La–Lu). Comp. Mater. Sci. 2014, 95, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Beiranvand, R. Hybrid exchange–correlation energy functionals for accurate prediction of the electronic and optical properties of alkaline-earth metal oxides. Mater. Sci. Semicond. Process. 2021, 135, 106092. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Gonze, X. Towards a potential-based conjugate gradient algorithm for order-N self-consistent total energy calculations. Phys. Rev. B 1996, 54, 4383. [Google Scholar] [CrossRef] [PubMed]
- Feynman, R.P. Forces in molecules. Phys. Rev. 1939, 56, 340. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976, 13, 5188. [Google Scholar] [CrossRef]
- Blöchl, P.E.; Jepsen, O.; Andersen, O.K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B. 1994, 49, 16223. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Baroni, S.; De Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515. [Google Scholar] [CrossRef] [Green Version]
- Jha, P.K. Phonon spectra and vibrational mode instability of MgCNi3. Phys. Rev. B 2005, 72, 214502. [Google Scholar] [CrossRef]
- Niessen, A.D.; De Boer, F.R.; Boom, R.D.; De Chatel, P.F.; Mattens, W.C.M.; Miedema, A.R. Model predictions for the enthalpy of formation of transition metal alloys II. Calphad 1983, 7, 51–70. [Google Scholar] [CrossRef]
- Hu, W.C.; Liu, Y.; Li, D.J.; Zeng, X.Q.; Xu, C.S. Mechanical and thermodynamic properties of Al3Sc and Al3Li precipitates in Al–Li–Sc alloys from first-principles calculations. Physica B 2013, 427, 85–90. [Google Scholar] [CrossRef]
- Sun, S.P.; Li, X.P.; Wang, H.J.; Jiang, H.F.; Lei, W.N.; Jiang, Y.; Yi, D.Q. First-principles investigations on the electronic properties and stabilities of low-index surfaces of L12–Al3Sc intermetallic. Appl. Surf. Sci. 2014, 288, 609–618. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Zhou, Y.; Chen, G. First-principles study of Al/A13Ti heterogeneous nucleation interface. Appl. Surf. Sci. 2014, 307, 593–600. [Google Scholar] [CrossRef]
- Gayle, F.W.; Vandersande, B. Phase transformations in the Al-Li-Zr system. Acta Metall. 1989, 37, 1033–1046. [Google Scholar] [CrossRef]
- Hu, Z.; Yin, Z.; Lin, J.; Zhang, L.; Qiu, S.; Yan, H.; Song, H. Microstructural, electronic, and mechanical properties of L12 ordered Al3Er and Al3Yb intermetallics: An experimental and first-principles calculations. Mater. Res. Express 2019, 6, 116516. [Google Scholar] [CrossRef]
- Dean, J.A. Lange’s Handbook of Chemistry. Mater. Manuf. Process 1990, 5, 687–688. [Google Scholar] [CrossRef]
- Li, S.S.; Li, L.; Han, J.; Wang, C.T.; Xiao, Y.Q.; Jian, X.D.; Su, Y.J. First-Principles Study on the Nucleation of Precipitates in Ternary Al Alloys Doped with Sc, Li, Zr, and Ti Elements. Appl. Surf. Sci. 2020, 526, 146455. [Google Scholar] [CrossRef]
- Tao, X.; Ouyang, Y.; Liu, H.; Feng, Y.; Du, Y.; Jin, Z. First-principles calculations of the thermodynamic and elastic properties of the L12-based Al3RE (RE= Sc, Y., La–Lu). Int. J. Mater. Res. 2008, 99, 582–588. [Google Scholar] [CrossRef]
- Ghosh, G.; Asta, M. First-principles calculation of structural energetics of Al–TM (TM= Ti, Zr, Hf) intermetallics. Acta Mater. 2005, 53, 3225–3252. [Google Scholar] [CrossRef]
- Wolverton, C. Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–(Si) and Al–Zn–Mg alloys. Acta Mater. 2001, 49, 3129–3142. [Google Scholar] [CrossRef]
- Wood, I.G.; Vočadlo, L.; Dobson, D.P.; Price, G.D.; Fortes, A.D.; Cooper, F.J.; McCammon, C.A. Thermoelastic properties of magnesiowüstite,(Mg1−xFex)O: Determination of the Anderson–Grüneisen parameter by time-of-flight neutron powder diffraction at simultaneous high pressures and temperatures. J. Appl. Crystallogr. 2008, 41, 886–896. [Google Scholar] [CrossRef]
- Yang, H.; Ghose, S. Thermal expansion, Debye temperature and Grüneisen parameter of synthetic (Fe, Mg) SiO3 orthopyroxenes. Phys. Chem. Miner. 1994, 20, 575–586. [Google Scholar] [CrossRef]
- Petrova, E.; Ermilov, S.; Su, R.; Nadvoretskiy, V.; Conjusteau, A.; Oraevsky, A. Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions. Opt. Express 2013, 21, 25077–25090. [Google Scholar] [CrossRef] [Green Version]
- Kushwah, S.S.; Tomar, Y.S.; Upadhyay, A.K. On the volume-dependence of the Grüneisen parameter and the Lindemann law of melting. J. Phys. Chem. Solids 2013, 74, 1143–1145. [Google Scholar] [CrossRef]
- Kushwah, S.S.; Sharma, M.P. Volume dependence of the Grüneisen parameter for MgO. Solid State Commun. 2012, 152, 414–416. [Google Scholar] [CrossRef]
- Adesakin, G.; Olubosede, O.; Fatigun, A.; Aliyu, E.; Oyedele, E.; Adekoya, O.E.; Ewumi10, T.O. Gruneisen parameter of metals based on free electron theory. Int. J. Mech. Prod. Eng. Res. Dev. (IJMPERD) 2020, 10, 5107–5114. [Google Scholar]
- Smith, T.F.; White, G.K. The low-temperature thermal expansion and Grüneisen parameters of some tetrahedrally bonded solids. J. Phys. C Solid State Phys. 1975, 8, 2031. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, D.; Fang, Q.; Chen, H.; Fan, T.; Liu, B.; Tang, P. Effects of finite temperature on the surface energy in Al alloys from first-principles calculations. Appl. Surf. Sci. 2019, 479, 499–505. [Google Scholar] [CrossRef]
- Tian, T.; Wang, X.F.; Li, W. Ab initio calculations on elastic properties in L12 structure Al3X and X3Al-type (X= transition or main group metal) intermetallic compounds. Solid State Commun. 2013, 156, 69–75. [Google Scholar] [CrossRef]
Structures | Solute Atomic Radius (Å) | ΔH (kJ·mol−1) | V0 (Å3 atom−1) | δ (%) | |||
---|---|---|---|---|---|---|---|
This work | Literature | This work | Literature | ||||
Al bulk | 1.431 [47] | 4.038 | 4.039 [48] | – | – | 16.474 | – |
Al3Er | 1.757 [47] | 4.232 | 4.215 [49] | −39.949 | −40.000 [49] | 18.950 | 4.80 |
Al3Hf | 1.564 [47] | 4.090 | 4.081 [50] | −35.341 | −37.300 [50] | 17.108 | 1.29 |
Al3Li | 1.520 [47] | 4.025 | 4.025 [48] | −9.452 | −9.439 [48] | 16.308 | 0.32 |
Al3Lu | 1.734 [47] | 4.269 | 4.206 [49] | −38.916 | −38.920 [49] | 19.453 | 5.72 |
Al3Mg | 1.600 [47] | 4.138 | 4.146 [51] | −0.898 | −1.060 [51] | 17.710 | 2.48 |
Al3Sc | 1.630 [47] | 4.103 | 4.106 [48] | −43.649 | −43.826 [48] | 17.308 | 1.61 |
Al3Ti | 1.448 [47] | 3.978 | 3.977 [48] | −35.422 | −34.579 [48] | 15.735 | 1.49 |
Al3Tm | 1.746 [47] | 4.221 | 4.200 [49] | −39.321 | −39.000 [49] | 18.805 | 4.53 |
Al3Yb | 1.940 [47] | 4.291 | 4.200 [49] | −16.312 | −17.000 [49] | 19.753 | 6.27 |
Al3Zr | 1.600 [47] | 4.107 | 4.106 [48] | −44.210 | −44.018 [48] | 17.323 | 1.71 |
Solutes/Solvent | Yb | Lu | Er | Tm |
---|---|---|---|---|
−0.7329 | −1.0468 | −0.9388 | −0.9579 | |
Al1 | 0.3314 | 0.2593 | 0.2770 | 0.4411 |
Al2 | 0.2131 | 0.3892 | 0.3889 | 0.2740 |
Al3 | 0.1885 | 0.3983 | 0.2729 | 0.2429 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, J.; Chen, Z.; Liu, L.; Zhang, Q.; He, M.; Li, J.; Peng, X.; Fan, T. The Thermal Properties of L12 Phases in Aluminum Enhanced by Alloying Elements. Metals 2021, 11, 1420. https://doi.org/10.3390/met11091420
Lan J, Chen Z, Liu L, Zhang Q, He M, Li J, Peng X, Fan T. The Thermal Properties of L12 Phases in Aluminum Enhanced by Alloying Elements. Metals. 2021; 11(9):1420. https://doi.org/10.3390/met11091420
Chicago/Turabian StyleLan, Jihang, Zhaoqun Chen, Linghong Liu, Qingzhou Zhang, Mengdong He, Jianbo Li, Xiaofang Peng, and Touwen Fan. 2021. "The Thermal Properties of L12 Phases in Aluminum Enhanced by Alloying Elements" Metals 11, no. 9: 1420. https://doi.org/10.3390/met11091420
APA StyleLan, J., Chen, Z., Liu, L., Zhang, Q., He, M., Li, J., Peng, X., & Fan, T. (2021). The Thermal Properties of L12 Phases in Aluminum Enhanced by Alloying Elements. Metals, 11(9), 1420. https://doi.org/10.3390/met11091420