Thermoelectric Power in Ce Systems with Unstable Valence
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. CeNi2(Si1−yGey)2
3.2. Ce(Ni1−xCux)2Si2
3.3. CeNi4Ga
4. Discussion and Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Minnich, A.J.; Dresselhaus, M.S.; Ren, Z.F.; Chen, G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2009, 2, 466–479. [Google Scholar] [CrossRef]
- Vaney, J.-B.; Aminorroaya Yamini, S.; Takaki, H.; Kobayashi, K.; Kobayashi, N.; Mori, T. Magnetism-mediated thermoelectric performance of the Cr-doped bismuth telluride tetradymite. Mater. Today Phys. 2019, 9, 100090. [Google Scholar] [CrossRef]
- Tsujii, N.; Nishide, A.; Hayakawa, J.; Mori, T. Observation of enhanced thermopower due to spin fluctuation in weak itinerant ferromagnet. Sci. Adv. 2019, 5, eaat5935. [Google Scholar] [CrossRef] [Green Version]
- Coqblin, B.; Schrieffer, J.R. Exchange Interaction in Alloys with Cerium Impurities. Phys. Rev. 1969, 185, 847–853. [Google Scholar] [CrossRef]
- Zlatić, V.; Horvatić, B.; Milat, I.; Coqblin, B.; Czycholl, G.; Grenzebach, C. Thermoelectric power of cerium and ytterbium intermetallics. Phys. Rev. B 2003, 68, 104432. [Google Scholar] [CrossRef] [Green Version]
- Koterlyn, M.D.; Yasnitskii, R.I.; Koterlyn, G.M.; Morokhivskii, B.S. Thermoelectric power in compounds with an intermediate valence of Ce: Phenomenological description. J. Alloys Compd. 2003, 348, 52–56. [Google Scholar] [CrossRef]
- Koterlyn, M.D.; Babych, O.; Koterlyn, G.M. Dependence of the CeNi5 thermoelectric power on strong 4f-electron instability. J. Alloys Compd. 2001, 325, 6–11. [Google Scholar] [CrossRef]
- Gottwick, U.; Gloos, K.; Horn, S.; Steglich, F.; Grewe, N. Transport coefficients of intermediate valent CeNix intermetallic compounds. J. Magn. Magn. Mater. 1985, 47–48, 536–538. [Google Scholar] [CrossRef]
- Toliński, T. Crystal electric field contribution to the thermoelectric power of the CeCoAl4 antiferromagnetic. Int. J. Mod. Phys. B 2018, 32, 1850347. [Google Scholar] [CrossRef]
- Stockert, U.; Seiro, S.; Caroca-Canales, N.; Hassinger, E.; Geibel, C. Valence effect on the thermopower of Eu systems. Phys. Rev. B 2020, 101, 235106. [Google Scholar] [CrossRef]
- Hirst, L.L. Theory of Magnetic Impurities in Metals. Phys. Kondens. Mater. 1970, 11, 255–278. [Google Scholar] [CrossRef]
- Sales, B.C.; Wohlleben, D.K. Susceptibility of Interconfiguration-Fluctuation Compounds. Phys. Rev. Lett. 1975, 35, 1240–1244. [Google Scholar] [CrossRef]
- Franz, W.; Steglich, F.; Zell, W.; Wohlleben, D.; Pobell, F. Intermediate Valence on Dilute Europium Ions. Phys. Rev. Lett. 1980, 45, 64–67. [Google Scholar] [CrossRef]
- Mazumdar, C.; Nagarajan, R.; Dhar, S.K.; Gupta, L.C.; Vijayaraghavan, R.; Padalia, B.D. Ce2Ni3Si5: A mixed-valence cerium compound. Phys. Rev. B 1992, 46, 9009–9012. [Google Scholar] [CrossRef] [Green Version]
- Layek, S.; Anand, V.K.; Hossain, Z. Valence fluctuation in Ce2Co3Ge5 and crystal field effect in Pr2Co3Ge5. J. Magn. Magn. Mater. 2009, 321, 3447–3452. [Google Scholar] [CrossRef] [Green Version]
- Toliński, T.; Synoradzki, K.; Bajorek, A.; Chełkowska, G.; Koterlyn, M.; Koterlyn, G.; Yasnitskii, R. Influence of chemical composition on the X-ray photoemission, thermopower, specific heat, and magnetic properties of CeNi2(Si1−yGey)2. Appl. Phys. A—Mater. Sci. Process. 2017, 123, 408. [Google Scholar] [CrossRef] [Green Version]
- Toliński, T.; Synoradzki, K.; Koterlyn, M.; Koterlyn, G.; Yasnitskii, R. Competing energy scales in the compounds Ce(Ni1−xCux)2(Si2). J. Alloys Compd. 2013, 580, 512–516. [Google Scholar] [CrossRef]
- Toliński, T.; Zlatić, V.; Kowalczyk, A. Thermoelectric power in CeT4M (T = Cu, Ni; M = In, Ga) compounds. J. Alloys Compd. 2010, 490, 15–18. [Google Scholar] [CrossRef]
- Toliński, T.; Kowalczyk, A.; Ivanov, V.; Chełkowska, G.; Timko, M. Mixed-valence and Kondo-like effect in CeNi4X (X = B, Al, Ga). Czech. J. Phys. 2004, 54, D287–D290. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Pugaczowa-Michalska, M.; Toliński, T. Electronic band structure of the CeNi4Ga compound. Phys. Stat. Sol. 2005, 242, 433–437. [Google Scholar] [CrossRef]
- Toliński, T.; Chełkowska, G.; Falkowski, M.; Kowalczyk, A. X-ray photoemission and magnetometric studies of valence changes in Ce(Cu1−xNix)4Ga. J. Magn. Magn. Mater. 2011, 323, 1678–1681. [Google Scholar] [CrossRef]
- Koterlyn, M.; Shcherba, I.; Yasnitskii, R.; Koterlyn, G. Peculiarities of the intermediate valence state of Ce in CeM2Si2 (M = Fe, Co, Ni) compounds. J. Alloys Compd. 2007, 442, 176–179. [Google Scholar] [CrossRef]
- Gegenwart, P.; Kromer, F.; Lang, M.; Sparn, G.; Geibel, C.; Steglich, F. Non-Fermi-Liquid Effects at Ambient Pressure in a Stoichiometric Heavy-Fermion Compound with Very Low Disorder: CeNi2Ge2. Phys. Rev. Lett. 1999, 82, 1293–1296. [Google Scholar] [CrossRef]
- Küchler, R.; Oeschler, N.; Gegenwart, P.; Cichorek, T.; Neumaier, K.; Tegus, O.; Geibel, C.; Mydosh, J.A.; Steglich, F.; Zhu, L.; et al. Divergence of the Grüneisen Ratio at Quantum Critical Points in Heavy Fermion Metals. Phys. Rev. Lett. 2003, 91, 066405. [Google Scholar] [CrossRef] [Green Version]
- Ehm, D.; Reinert, F.; Nicolay, G.; Schmidt, S.; Hüfner, S.; Claessen, R.; Eyert, V.; Geibel, C. Electronic structure of CeNi2Ge2 investigated by angle-resolved photoemission and density-functional calculations. Phys. Rev. B 2001, 64, 235104. [Google Scholar] [CrossRef]
- Steglich, F.; Buschinger, B.; Gegenwart, P.; Lohmann, M.; Helfrich, R.; Langhammer, C.; Hellmann, P.; Donnevert, L.; Thomas, S.; Link, A.; et al. Quantum critical phenomena in undoped heavy-fermion metals. J. Phys. Condens. Matter 1996, 8, 9909–9921. [Google Scholar] [CrossRef]
- Kaczorowski, D.; Rogl, P.; Hiebl, K. Magnetic behavior in a series of cerium ternary intermetallics: Ce2T2In (T = Ni, Cu, Rh, Pd, Pt, and Au). Phys. Rev. B 1996, 54, 9891–9902. [Google Scholar] [CrossRef] [PubMed]
- Kaczorowski, D.; Pikul, A.P.; Burkhardt, U.; Schmidt, M.; Ślebarski, A.; Szajek, A.; Werwiński, M.; Grin, Y. Magnetic properties and electronic structures of intermediate valence systems CeRhSi2 and Ce2Rh3Si5. J. Phys. Condens. Matter 2010, 22, 215601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swatek, P.; Kaczorowski, D. Intermediate valence behavior in the novel cage compound CeIr2Zn20. J. Phys. Condens. Matter 2013, 25, 055602. [Google Scholar] [CrossRef] [PubMed]
- Röhler, J. Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K.A., Jr., Eyring, L., Hüfner, S., Eds.; Elsevier: Amsterdam, The Netherlands, 1987; Volume 10, p. 453. [Google Scholar]
- Gunnarsson, O.; Schönhammer, K. Electron spectroscopies for Ce compounds in the impurity model. Phys. Rev. B 1983, 28, 4315–4341. [Google Scholar] [CrossRef]
- Fuggle, J.C.; Hillebrecht, F.U.; Zolnierek, Z.; Lässer, R.; Freiburg, C.; Gunnarsson, O.; Schönhammer, K. Electronic structure of Ce and its intermetallic compounds. Phys. Rev. B 1983, 27, 7330–7341. [Google Scholar] [CrossRef]
- Tanusilp, S.; Ohishi, Y.; Muta, H.; Yamanaka, S.; Nishide, A.; Hayakawa, J.; Kurosaki, K. Ytterbium Silicide (YbSi2): A Promising Thermoelectric Material with a High Power Factor at Room Temperature. Phys. Status Solidi—RRL 2018, 12, 1700372. [Google Scholar] [CrossRef]
- Ahmed, F.; Valenta, J.; Tsujii, N.; Hussain, A.; Jabeen, N.; Mori, T. The low and high temperature thermoelectric properties of Yb3Si5. Mater. Res. Express 2021, 8, 075504. [Google Scholar] [CrossRef]
- Sussardi, A.; Tanaka, T.; Khan, A.U.; Schlapbach, L.; Mori, T. Enhanced thermoelectric properties of samarium boride. J. Mater. 2015, 1, 196–204. [Google Scholar] [CrossRef] [Green Version]
y (Ge) | TSF (K) | Eex (K) |
---|---|---|
0.0 | 242 | 2455 |
0.13 | 259 (265 a, 310 b) | 2094 (1196 a, 960 b) |
0.63 | 96 (209 a, 154 b) | 768 (465 a, 399 b) |
0.88 | 68 | 569 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toliński, T. Thermoelectric Power in Ce Systems with Unstable Valence. Metals 2021, 11, 1475. https://doi.org/10.3390/met11091475
Toliński T. Thermoelectric Power in Ce Systems with Unstable Valence. Metals. 2021; 11(9):1475. https://doi.org/10.3390/met11091475
Chicago/Turabian StyleToliński, Tomasz. 2021. "Thermoelectric Power in Ce Systems with Unstable Valence" Metals 11, no. 9: 1475. https://doi.org/10.3390/met11091475
APA StyleToliński, T. (2021). Thermoelectric Power in Ce Systems with Unstable Valence. Metals, 11(9), 1475. https://doi.org/10.3390/met11091475