Toward a Simplified Arc Impingement Model in a Direct-Current Electric Arc Furnace
Abstract
:1. Introduction
2. Modelling
2.1. Governing Equations
2.2. Simulation Settings
3. Results and Discussion
3.1. Reference Case
3.2. Effect of the Arc Gap
3.3. Effect of the Gas Density
3.4. Effect of the Applied Current Magnitude
3.5. Discussion of the Thermal Field inside the Arc
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Symbol | Name | Unit |
ρ | Density | Kg/m3 |
U | Velocity | m/s |
p | Pressure | N/m2 |
µ | Kinetic viscosity | m2/s |
g | Gravitational acceleration | Nm2/kg2 |
t | Time | s |
T | Temperature | K |
cp | Specific heat | J/k·kg |
K | Thermal conductivity | W/m·K |
B | Magnetic field | T |
J | Current density | A/m2 |
µ0 | Vacuum permeability | H/m |
References
- Jones, R.T.; Reynolds, Q.G.; Curr, T.R.; Sager, D. Some myths about DC arc furnaces. J. South. Afr. Inst. Min. Metall. 2011, 111, 665–674. [Google Scholar]
- Szekely, J.; McKelliget, J.; Choudhary, M. Heat-transfer fluid flow and bath circulation in electric-arc furnaces and DC plasma furnaces. Ironmak. Steelmak. 1983, 10, 169–179. [Google Scholar]
- Bowman, B.; Krüger, K. Arc Furnace Physics; Verlag Stahleisen: Düsseldorf, Germany, 2009; pp. 176–190. [Google Scholar]
- Ushio, M.; Szekely, J.; Chang, C.W. Mathematical modelling of flow field and heat transfer in high-current arc discharge. Ironmak. Steelmak. 1981, 8, 279–286. [Google Scholar]
- Alexis, J.; Ramirez, M.; Trapaga, G.; Jönsson, P. Modeling of a DC electric arc furnace—heat transfer from the arc. ISIJ Int. 2000, 40, 1089–1097. [Google Scholar] [CrossRef]
- Ramírez, M.; Alexis, J.; Trapaga, G.; Jönsson, P.; Mckelliget, J. Modeling of a DC electric arc furnace—Mixing in the bath. ISIJ Int. 2001, 41, 1146–1155. [Google Scholar] [CrossRef] [Green Version]
- Kazak, O. Numerical modelling of electrovortex and heat flows in dc electric arc furnace with cooling bottom electrode. Heat Mass Transf. 2014, 50, 685–692. [Google Scholar] [CrossRef]
- Reynolds, Q.G. Application of multiphase computational fluid dynamics to the plasma arc impingement problem in DC furnaces. In Proceedings of the 9th South African Conference on Computational and Applied Mechanics, Somerset West, South Africa, 14–16 January 2014; pp. 14–16. [Google Scholar]
- Klementyeva, I.B.; Pinchuk, M.E. Parameters of electrical discharges with liquid metal electrode. J. Phys. Conf. Ser. 2015, 653, 012150. [Google Scholar] [CrossRef]
- Reynolds, Q. Computational Modeling of Arc–Slag Interaction in DC Furnaces. JOM 2017, 69, 351–357. [Google Scholar] [CrossRef]
- Adib, M.; Ehteram, M.A.; Tabrizi, H.B. Numerical and experimental study of oscillatory behavior of liquid surface agitated by high-speed gas jet. Appl. Math. Model. 2018, 62, 510–525. [Google Scholar] [CrossRef]
- Ansys Fluent Software; Version 14.5; 275 Technology Drive Inc.: Canonsburg, PA, USA, 2011.
- Morris, J.C.; Bach, G.R.; Krey, R.U.; Liebermann, R.W.; Yos, J.M. Continuum radiated power for high-temperature air and its components. AIAA J. 1966, 4, 1223–1226. [Google Scholar] [CrossRef]
- Boulos, M.I.; Fauchais, P.; Pfender, E. Thermal Plasmas: Fundamentals and Applications; Springer: New York, NY, USA, 2013. [Google Scholar]
- McKelliget, J.W.; Szekely, J. A mathematical model of the cathode region of a high intensity carbon arc. J. Phys. D Appl. Phys. 1983, 16, 1007. [Google Scholar] [CrossRef]
- Jordan, G.R.; Bowman, B.; Wakelam, D. Electrical and photographic measurements of high-power arcs. J. Phys. D Appl. Phys. 1970, 3, 1089. [Google Scholar] [CrossRef]
- Ramírez, M.A. Mathematical Modeling of DC Electric Arc Furnace Operations. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2000. [Google Scholar]
- Gruber, J.C.; Echterhof, T.; Pfeifer, H. Investigation on the influence of the arc region on heat and mass transport in an EAF freeboard using numerical modeling. Steel Res. Int. 2016, 87, 15–28. [Google Scholar] [CrossRef]
Density | Specific Heat | Thermal Conductivity | Viscosity | Electrical Conductivity |
---|---|---|---|---|
7000 kg/m3 | 800 J/kg | 40 W/mK | 0.006 Pa.s | 800,000 S |
Boundary | Flow Boundary Conditions | Thermal Boundary Conditions | Induction Equation Boundary Conditions |
---|---|---|---|
1. Electrode Bottom | |||
2. Electrode Side | |||
3. Gas Top | |||
4. Gas and Melt Side | |||
5. Metal Bath Bottom (Anode) | |||
6. Axis of Symmetry |
Current (kA) | Gap (m) | Gas Density (kg/m3) | Max Arc Jet Velocity (m/s) | Cavity Depth (m) | Actual Arc Length (m) |
---|---|---|---|---|---|
10 | 0.25 | 1 | ≈200 | 0.5 | 0.28 |
10 | 0.2 | 1 | ≈200 | 0.4 | 0.22 |
10 | 0.3 | 1 | ≈200 | 0.5 | 0.3 |
10 | 0.25 | 0.1 | ≈450 | 0.5 | 0.28 |
10 | 0.25 | 0.01 | ≈1400 | 0.5 | 0.28 |
20 | 0.25 | 1 | ≈200 | ≥0.7 | 0.3 |
30 | 0.25 | 1 | ≈200 | ≥0.7 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Nasser, M.; Kharicha, A.; Barati, H.; Pichler, C.; Hackl, G.; Gruber, M.; Ishmurzin, A.; Redl, C.; Wu, M.; Ludwig, A. Toward a Simplified Arc Impingement Model in a Direct-Current Electric Arc Furnace. Metals 2021, 11, 1482. https://doi.org/10.3390/met11091482
Al-Nasser M, Kharicha A, Barati H, Pichler C, Hackl G, Gruber M, Ishmurzin A, Redl C, Wu M, Ludwig A. Toward a Simplified Arc Impingement Model in a Direct-Current Electric Arc Furnace. Metals. 2021; 11(9):1482. https://doi.org/10.3390/met11091482
Chicago/Turabian StyleAl-Nasser, Mohamad, Abdellah Kharicha, Hadi Barati, Christoph Pichler, Gernot Hackl, Markus Gruber, Anton Ishmurzin, Christian Redl, Menghuai Wu, and Andreas Ludwig. 2021. "Toward a Simplified Arc Impingement Model in a Direct-Current Electric Arc Furnace" Metals 11, no. 9: 1482. https://doi.org/10.3390/met11091482
APA StyleAl-Nasser, M., Kharicha, A., Barati, H., Pichler, C., Hackl, G., Gruber, M., Ishmurzin, A., Redl, C., Wu, M., & Ludwig, A. (2021). Toward a Simplified Arc Impingement Model in a Direct-Current Electric Arc Furnace. Metals, 11(9), 1482. https://doi.org/10.3390/met11091482