Investigation of the Technological Possibility of Laser Hardening of Stainless Steel 14Cr17Ni2 to a Deep Depth of the Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Experiments
2.2. Experimental Methods and Equipment
2.3. Methods of Preparation and Research of Metallographic Sections
2.4. Method of Measuring Hardness and Microhardness
3. Results and Discussion
3.1. Experiments without Scanning Laser Radiation
3.2. Experiments with Scanning Laser Radiation
3.3. Comparison of Calculations and Experimental Results
3.4. Microstructure Analysis
3.5. Microhardness Analysis
3.6. XRD Results Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glushakova, D.B.; Grinchenko, E.D. Investigation of the structural state and mechanical properties of the surface layer of a blade made of 15Cr11MoV steel hardened with high-frequency currents. Bull. KHNADU 2017, 77, 125–130. [Google Scholar]
- Vodin, D.V. Laser treatment as an advanced technique for increasing the wear resistance of metal-cutting tools. In Proceedings of the Actual Issues of Technical Sciences: Materials of the III International Scientific Conference, Perm, Russia, 23–26 April 2015; pp. 95–97. [Google Scholar]
- Dinesh Babu, P.; Balasubramanian, K.R.; Buvanashekaran, G. Laser surface hardening: A review. Int. J. Surf. Sci. Eng. 2011, 5, 131–151. [Google Scholar] [CrossRef]
- Motyka, E. Protecting turbine blades Aerospace America. Aerosp. Am. 2017, 55, 16–19. [Google Scholar]
- Moradi, M.; Sharif, S.; Jamshidi Nasab, S.; Karami Moghadam, M. Laser surface hardening of AISI 420 steel: Parametric evaluation, statistical modeling and optimization. Optik 2020, 224, 165666. [Google Scholar] [CrossRef]
- Tani, G.; Fortunato, A.; Ascari, A.; Campana, G. Laser surface hardening of martensitic stainless steel hollow parts. CIRP Ann. 2010, 59, 207–210. [Google Scholar] [CrossRef]
- Biryukov, V.P.; Isakov, V.V.; Fedotov, A.Y.; Baulin, D.A. Determination of the parameters of zone the laser hardening of steels and their tribological characteristics. Photonics 2019, 13, 242–251. [Google Scholar]
- Idan, A.F.; Akimov, O.; Golovko, L.; Goncharuk, O.; Kostyk, K. The study of the influence of laser hardening conditions on the change in properties of steels. East.-Eur. J. Enterp. Technol. 2016, 2, 69–73. [Google Scholar] [CrossRef] [Green Version]
- El-Batahgy, A.-M.; Ramadan, R.A.; Moussa, A.-R. Laser Surface Hardening of Tool Steels—Experimental and Numerical Analysis. J. Surf. Eng. Mater. Adv. Technol. 2013, 03, 146–153. [Google Scholar] [CrossRef] [Green Version]
- GOST 5632-72. High-Alloy Steels and Corrosion-Proof, Heat-Resisting and Heat Treated Alloys. GRADES. Available online: https://docs.cntd.ru/document/1200001716 (accessed on 15 November 2021).
- Panchenko, V. Laser Technologies of Materials Processing: Modern Problems of Fundamental Research and Applied Developments; Laser Hardening of Metals—FIZMATLIT: Moscow, Russia, 2009; Chapter 12; p. 664. [Google Scholar]
- Available online: https://www.astm.org/Standards/E1245.htm (accessed on 11 November 2021).
- Liu, G.; Yang, S.; Han, W.; Yan, P.; Wang, M.; Hu, Q.; Misra, R.; Shang, C.; Wan, F. The simultaneous occurrence of Kurdjumov-Sachs and irrational orientation relationships between delta-ferrite and austenite phase in a 17Cr–5Ni stainless steel. Mater. Sci. Eng. A 2020, 798, 140122. [Google Scholar] [CrossRef]
- Saini, N.; Mulik, R.S.; Mahapatra, M.M.; Kannan, R.; Sharma, N.K.; Li, L. Dissolution of δ-ferrite and its effect on mechanical properties of P92 steel welds. Mater. Sci. Eng. A 2020, 796, 139370. [Google Scholar] [CrossRef]
- Wang, X.; Yi, G.; Sun, Q.; Xiao, M.; Gao, Y.; Zhang, Z.; Di, H.; Zhou, Y.N. Study on δ-ferrite evolution and properties of laser fusion zone during post-weld heat treatment on Al-Si coated press-hardened steel. J. Mater. Res. Technol. 2020, 9, 5712–5722. [Google Scholar] [CrossRef]
- Sun, B.; Palanisamy, D.; Ponge, D.; Gault, B.; Fazeli, F.; Scott, C.; Yue, S.; Raabe, D. Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite. Acta Mater. 2019, 164, 683–696. [Google Scholar] [CrossRef]
- Sun, Q.; Di, H.-S.; Wang, X.-N.; Chen, X.-M. Suppression of δ-ferrite formation on Al-Si coated press-hardened steel during laser welding. Mater. Lett. 2019, 245, 106–109. [Google Scholar] [CrossRef]
- Alcantar-Mondragón, N.; Reyes-Calderón, F.; García-García, V.; Vázquez-Gómez, O.; Salgado-López, J.M. Effect of PWHT on the dissolution of δ-ferrite in the welded joint of 12Cr–1Mo steels for steam turbines. J. Mater. Res. Technol. 2021, 10, 1262–1279. [Google Scholar] [CrossRef]
- Bettanini, A.M.; Ding, L.; Mithieux, J.-D.; Parrens, C.; Idrissi, H.; Schryvers, D.; Delannay, L.; Pardoen, T.; Jacques, P.J. Influence of M23C6 dissolution on the kinetics of ferrite to austenite transformation in Fe-11Cr-0.06C stainless steel. Mater. Des. 2019, 162, 362–374. [Google Scholar] [CrossRef]
Steel | C | Si | Mn | Ni | S | P | Cr | Ti | Cu | Fe |
---|---|---|---|---|---|---|---|---|---|---|
14Cr17Ni2 (AISI 431) | 0.14 | ≤0.8 | ≤0.8 | 2 | ≤0.025 | ≤0.03 | 17 | ≤0.2 | ≤0.3 | Bal. |
No. | α, (°) | β, (°) | Dsurf, (mm) | Qn, (kW*s/mm) | Tsurf, (K) |
---|---|---|---|---|---|
1 | 10 | 38 | 8 | 0.22 | 1473 |
2 | 10 | 38 | 8 | 0.4 | 1373 |
3 | 10 | 38 | 8 | 0.43 | 1523 |
4 | 10 | 38 | 8 | 0.46 | 1522 |
No. | Type of Beam Scanning | Qn, (kW*s/mm) | Tsurf, (K) |
---|---|---|---|
5 | triangle | 0.73 | 1473 |
6 | triangle | 0.78 | 1553 |
7 | triangle | 0.76 | 1523 |
8 | sinus | 0.73 | 1243 |
No. | Qn, (kW*s/mm) | Type of Beam Scanning | Melting Zone, (mm) | Hardened Zone, (mm) | HAZ, (mm) | Retained Austenite, γ (wt. %) |
---|---|---|---|---|---|---|
1 | 0.22 | No scan | – | 0.35 | 0.75 | – |
2 | 0.40 | – | 0.75 | 1.2 | 0.1 | |
3 | 0.43 | – | 0.65 | 1.25 | – | |
4 | 0.46 | – | 1.25 | 1.6 | 2.2 | |
5 | 0.73 | Triangle | 0.17 | 1.15 | 1.85 | 0.35 |
6 | 0.78 | 0.46 | 1.4 | 2.2 | 0.85 | |
7 | 0.76 | 0.38 | 1.33 | 2.1 | 0.5 | |
8 | 0.73 | Sinus | – | 0.42 | 1.06 | – |
9 | 0.28 | No scan | – | 0.3 | 0.6 | – |
10 | 0.42 | – | 0.7 | 1.1 | 0.1 | |
11 | 0.28 | No scan (2 passes) | – | 0.4 | 0.73 | 0.4 |
12 | 0.42 | 0.11 | 1.3 | 1.7 | 1.6 | |
13 | 0.28 | No scan (4 passes) | – | 0.78 | 1.4 | 0.2 |
14 | 0.42 | 0.47 | 1.6 | 2.2 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Somonov, V.; Tsibulskiy, I.; Mendagaliyev, R.; Akhmetov, A. Investigation of the Technological Possibility of Laser Hardening of Stainless Steel 14Cr17Ni2 to a Deep Depth of the Surface. Metals 2022, 12, 5. https://doi.org/10.3390/met12010005
Somonov V, Tsibulskiy I, Mendagaliyev R, Akhmetov A. Investigation of the Technological Possibility of Laser Hardening of Stainless Steel 14Cr17Ni2 to a Deep Depth of the Surface. Metals. 2022; 12(1):5. https://doi.org/10.3390/met12010005
Chicago/Turabian StyleSomonov, Vladislav, Igor Tsibulskiy, Ruslan Mendagaliyev, and Alexander Akhmetov. 2022. "Investigation of the Technological Possibility of Laser Hardening of Stainless Steel 14Cr17Ni2 to a Deep Depth of the Surface" Metals 12, no. 1: 5. https://doi.org/10.3390/met12010005
APA StyleSomonov, V., Tsibulskiy, I., Mendagaliyev, R., & Akhmetov, A. (2022). Investigation of the Technological Possibility of Laser Hardening of Stainless Steel 14Cr17Ni2 to a Deep Depth of the Surface. Metals, 12(1), 5. https://doi.org/10.3390/met12010005