Mechanism of Balanced Strength and Ductility in High-Strength Low-Alloy Steel
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Mechanical Response
3.2. Microstructure Observations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rashid, M.S. High-Strength, Low-Alloy Steels. Science 1980, 208, 862–869. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Y.; Gan, K.; Dong, J.; Liu, C. Acquiring a Low Yield Ratio Well Synchronized with Enhanced Strength of HSLA Pipeline Steels through Adjusting Multiple-Phase Microstructures. Mater. Sci. Eng. A 2020, 785, 139350. [Google Scholar] [CrossRef]
- Yu, Y.; Gao, M.; Hu, B.; Tian, C.; Rong, X.; Xie, Z.; Guo, H.; Shang, C. Tailoring Heterogeneous Microstructure in a High-Strength Low-Alloy Steel for Enhanced Strength-Toughness Balance. Metals 2021, 11, 1983. [Google Scholar] [CrossRef]
- Sun, W.; Wang, G.; Zhang, J.; Xia, D.; Sun, H. Microstructure Characterization of High-Heat-Input Welding Joint of HSLA Steel Plate for Oil Storage Construction. J. Mater. Sci. Technol. 2009, 25, 857. [Google Scholar]
- Jiménez-Peña, C.; Goulas, C.; Preußner, J.; Debruyne, D. Failure Mechanisms of Mechanically and Thermally Produced Holes in High-Strength Low-Alloy Steel Plates Subjected to Fatigue Loading. Metals 2020, 10, 318. [Google Scholar] [CrossRef]
- Saha, D.C.; Westerbaan, D.; Nayak, S.S.; Biro, E.; Gerlich, A.P.; Zhou, Y. Microstructure-Properties Correlation in Fiber Laser Welding of Dual-Phase and HSLA Steels. Mater. Sci. Eng. A 2014, 607, 445–453. [Google Scholar] [CrossRef]
- Charleux, M.; Poole, W.J.; Militzer, M.; Deschamps, A. Precipitation Behavior and Its Effect on Strengthening of an HSLA-Nb/Ti Steel. Metall. Mater. Trans. A 2001, 32, 1635–1647. [Google Scholar] [CrossRef]
- Park, D.-B.; Huh, M.-Y.; Shim, J.-H.; Suh, J.-Y.; Lee, K.-H.; Jung, W.-S. Strengthening Mechanism of Hot Rolled Ti and Nb Microalloyed HSLA Steels Containing Mo and W with Various Coiling Temperature. Mater. Sci. Eng. A 2013, 560, 528–534. [Google Scholar] [CrossRef]
- Majta, J.; Muszka, K. Mechanical Properties of Ultra Fine-Grained HSLA and Ti-IF Steels. Mater. Sci. Eng. A 2007, 464, 186–191. [Google Scholar] [CrossRef]
- Charalampopoulou, E.; Cautaerts, N.; Van der Donck, T.; Schryvers, D.; Lambrinou, K.; Delville, R. Orientation Relationship of the Austenite-to-Ferrite Transformation in Austenitic Stainless Steels Due to Dissolution Corrosion in Contact with Liquid Pb-Bi Eutectic. Scr. Mater. 2019, 167, 66–70. [Google Scholar] [CrossRef]
- Liu, S.; Hu, B.; Yu, Y.; Shang, C.; Misra, R.D.K.; Jin, X. Shaping Mechanism of Ultrafine Metastable Austenite in HSLA Steels through a Cumulative Process of Hot Rolling, Partitioning and Tempering. Mater. Sci. Eng. A 2021, 811, 141060. [Google Scholar] [CrossRef]
- Mueller, T.; Kapp, M.W.; Bachmaier, A.; Felfer, P.; Pippan, R. Ultrahigh-strength low carbon steel obtained from the martensitic state via high pressure torsion. Acta Mater. 2019, 166, 168–177. [Google Scholar] [CrossRef]
- Li, L.; Virta, J. Ultrahigh Strength Steel Wires Processed by Severe Plastic Deformation for Ultrafine Grained Microstructure. Mater. Sci. Technol. 2011, 27, 845–862. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, L.; Liu, C.; Yu, L.; Yan, Z.; Li, H. Effect of Step Quenching on Microstructures and Mechanical Properties of HSLA Steel. Mater. Sci. Eng. A 2016, 675, 371–378. [Google Scholar] [CrossRef]
- Li, X.; Shi, L.; Liu, Y.; Gan, K.; Liu, C. Achieving a Desirable Combination of Mechanical Properties in HSLA Steel through Step Quenching. Mater. Sci. Eng. A 2020, 772, 138683. [Google Scholar] [CrossRef]
- Yu, Y.; Hu, B.; Gao, M.; Xie, Z.; Rong, X.; Han, G.; Guo, H.; Shang, C. Determining Role of Heterogeneous Microstructure in Lowering Yield Ratio and Enhancing Impact Toughness in High-Strength Low-Alloy Steel. Int. J. Miner. Metall. Mater. 2021, 28, 816–825. [Google Scholar] [CrossRef]
- Chen, J.; Lv, M.; Tang, S.; Liu, Z.; Wang, G. Correlation between Mechanical Properties and Retained Austenite Characteristics in a Low-Carbon Medium Manganese Alloyed Steel Plate. Mater. Charact. 2015, 106, 108–111. [Google Scholar] [CrossRef]
- Chen, J.; Lv, M.; Liu, Z.; Wang, G. Combination of Ductility and Toughness by the Design of Fine Ferrite/Tempered Martensite–Austenite Microstructure in a Low Carbon Medium Manganese Alloyed Steel Plate. Mater. Sci. Eng. A 2015, 648, 51–56. [Google Scholar] [CrossRef]
- Yen, H.-W.; Chen, P.-Y.; Huang, C.-Y.; Yang, J.-R. Interphase Precipitation of Nanometer-Sized Carbides in a Titanium–Molybdenum-Bearing Low-Carbon Steel. Acta Mater. 2011, 59, 6264–6274. [Google Scholar] [CrossRef]
- Kong, H.; Liu, C. A Review on Nano-Scale Precipitation in Steels. Technologies 2018, 6, 36. [Google Scholar] [CrossRef]
- Kesternich, W. Dislocation-Controlled Precipitation of TiC Particles and Their Resistance to Coarsening. Philos. Mag. A 1985, 52, 533–548. [Google Scholar] [CrossRef]
- Kapoor, M.; Isheim, D.; Ghosh, G.; Vaynman, S.; Fine, M.E.; Chung, Y.-W. Aging Characteristics and Mechanical Properties of 1600MPa Body-Centered Cubic Cu and B2-NiAl Precipitation-Strengthened Ferritic Steel. Acta Mater. 2014, 73, 56–74. [Google Scholar] [CrossRef]
- Sun, C.; Zheng, Y.; Chen, L.; Fang, F.; Zhou, X.; Jiang, J. Thermodynamic Stability and Mechanical Properties of (V, M)C (M = W, Mo and Cr) Multicomponent Carbides: A Combined Theoretical and Experimental Study. J. Alloys Compd. 2022, 895, 162649. [Google Scholar] [CrossRef]
- Machmeier, P.M.; Little, C.D.; Horowitz, M.H.; Oates, R.P. Development of a Strong (1650 MNm−2 Tensile Strength) Martensitic Steel Having Good Fracture Toughness. Met. Technol. 1979, 6, 291–296. [Google Scholar] [CrossRef]
- Garrison, W.M.; Moody, N.R. The Influence of Inclusion Spacing and Microstructure on the Fracture Toughness of the Secondary Hardening Steel AF 1410. Metall. Trans. A 1987, 18, 1257–1263. [Google Scholar] [CrossRef]
- Pan, P.; Tang, H.; Chen, X.; Wang, Z.; Zuo, L.; Yang, M.; Cao, Y. Effects of Direct-Quenching and Tempering on the Microstructure and Mechanical Properties of an Ultra-Low Carbon Ti Containing Bainite Steel. Mater. Sci. Eng. A 2020, 796, 139987. [Google Scholar] [CrossRef]
- Bachmann, F.; Hielscher, R.; Schaeben, H. Texture Analysis with MTEX—Free and Open Source Software Toolbox. Solid State Phenom. 2010, 160, 63–68. [Google Scholar] [CrossRef]
- Kang, J.-Y.; Kim, D.H.; Baik, S.-I.; Ahn, T.-H.; Kim, Y.-W.; Han, H.N.; Oh, K.H.; Lee, H.-C.; Han, S.H. Phase Analysis of Steels by Grain-Averaged EBSD Functions. ISIJ Int. 2011, 51, 130–136. [Google Scholar] [CrossRef]
- Nako, H.; Hatano, H.; Okazaki, Y.; Yamashita, K.; Otsu, M. Crystal Orientation Relationships between Acicular Ferrite, Oxide, and the Austenite Matrix. ISIJ Int. 2014, 54, 1690–1696. [Google Scholar] [CrossRef]
- Monlevade, E.F.; Falleiros, I.G.S. Orientation Relationships Associated with Austenite Formation from Ferrite in a Coarse-Grained Duplex Stainless Steel. Metall. Mater. Trans. A 2006, 37, 939–949. [Google Scholar] [CrossRef]
- Kluken, A.O.; Grong, Ø.; Hjelen, J. The Origin of Transformation Textures in Steel Weld Metals Containing Acicular Ferrite. Metall. Trans. A 1991, 22, 657–663. [Google Scholar] [CrossRef]
- Takayama, N.; Miyamoto, G.; Furuhara, T. Effects of Transformation Temperature on Variant Pairing of Bainitic Ferrite in Low Carbon Steel. Acta Mater. 2012, 60, 2387–2396. [Google Scholar] [CrossRef]
- Li, L.L.; Zhang, Z.J.; Zhang, P.; Yang, J.B.; Zhang, Z.F. Distinct Fatigue Cracking Modes of Grain Boundaries with Coplanar Slip Systems. Acta Mater. 2016, 120, 120–129. [Google Scholar] [CrossRef]
- Hu, T.; Ma, K.; Topping, T.D.; Saller, B.; Yousefiani, A.; Schoenung, J.M.; Lavernia, E.J. Improving the Tensile Ductility and Uniform Elongation of High-Strength Ultrafine-Grained Al Alloys by Lowering the Grain Boundary Misorientation Angle. Scr. Mater. 2014, 78, 25–28. [Google Scholar] [CrossRef]
- Li, Y.L.; Cheng, X.; Duan, W.H.; Qiang, W.J. Improved Ductility by Coupled Motion of Grain Boundaries in Nanocrystalline B2-FeCo Alloys. Comput. Mater. Sci. 2021, 198, 110703. [Google Scholar] [CrossRef]
- Wu, B.B.; Wang, Z.Q.; Wang, X.L.; Xu, W.S.; Shang, C.J.; Misra, R.D.K. Toughening of Martensite Matrix in High Strength Low Alloy Steel: Regulation of Variant Pairs. Mater. Sci. Eng. A 2019, 759, 430–436. [Google Scholar] [CrossRef]
- Xiong, X.C.; Chen, B.; Huang, M.X.; Wang, J.F.; Wang, L. The Effect of Morphology on the Stability of Retained Austenite in a Quenched and Partitioned Steel. Scr. Mater. 2013, 68, 321–324. [Google Scholar] [CrossRef]
- Zhou, Q.; Qian, L.; Tan, J.; Meng, J.; Zhang, F. Inconsistent Effects of Mechanical Stability of Retained Austenite on Ductility and Toughness of Transformation-Induced Plasticity Steels. Mater. Sci. Eng. A 2013, 578, 370–376. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, M.; Guo, Z.; Chen, N.; Rong, Y. A New Effect of Retained Austenite on Ductility Enhancement in High-Strength Quenching–Partitioning–Tempering Martensitic Steel. Mater. Sci. Eng. A 2011, 528, 8486–8491. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, K.; Guo, Z.; Chen, N.; Rong, Y. A New Effect of Retained Austenite on Ductility Enhancement in High Strength Bainitic Steel. Mater. Sci. Eng. A 2012, 552, 288–294. [Google Scholar] [CrossRef]
- Pushkareva, I.; Allain, S.; Scott, C.; Redjaïmia, A.; Moulin, A. Relationship between Microstructure, Mechanical Properties and Damage Mechanisms in High Martensite Fraction Dual Phase Steels. ISIJ Int. 2015, 55, 2237–2246. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Y.; Li, C.-H.; Tsao, T.-C.; Chiu, P.-H.; Tsai, S.-P.; Yang, J.-R.; Chiang, L.-J.; Wang, S.-H. A Novel Technique for Developing a Dual-Phase Steel with a Lower Strength Difference between Ferrite and Martensite. Mater. Today Commun. 2020, 23, 100895. [Google Scholar] [CrossRef]
- Perrard, F.; Donnadieu, P.; Deschamps, A.; Barges, P. TEM Study of NbC Heterogeneous Precipitation in Ferrite. Philos. Mag. 2006, 86, 4271–4284. [Google Scholar] [CrossRef]
- Li, X.-L.; Deng, X.-T.; Lei, C.-S.; Wang, Z.-D. New Orientation Relationship with Low Interfacial Energy in MC/Ferrite System Observed in Nb-Ti Bearing Steel during Isothermal Quenching Process. Scr. Mater. 2019, 163, 101–106. [Google Scholar] [CrossRef]
- Shi, R.; Ma, Y.; Wang, Z.; Gao, L.; Yang, X.-S.; Qiao, L.; Pang, X. Atomic-Scale Investigation of Deep Hydrogen Trapping in NbC/α-Fe Semi-Coherent Interfaces. Acta Mater. 2020, 200, 686–698. [Google Scholar] [CrossRef]
- Yang, M.; Orekhov, A.; Hu, Z.-Y.; Feng, M.; Jin, S.; Sha, G.; Li, K.; Samaee, V.; Song, M.; Du, Y.; et al. Shearing and Rotation of Β″ and Β′ Precipitates in an Al-Mg-Si Alloy under Tensile Deformation: In-Situ and Ex-Situ Studies. Acta Mater. 2021, 220, 117310. [Google Scholar] [CrossRef]
- Seidman, D.N.; Marquis, E.A.; Dunand, D.C. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al (Sc) alloys. Acta Mater. 2002, 50, 4021–4035. [Google Scholar] [CrossRef]
C | Si | Mn | Cr | Ni | Mo | V | Ti | Nb | Al | P/ppm | S/ppm |
---|---|---|---|---|---|---|---|---|---|---|---|
0.06 | 0.08 | 1.27 | 0.53 | 4.71 | 0.53 | 0.03 | 0.007 | 0.06 | 0.09 | 74 | 14 |
Name | Orientation Relationship | |
---|---|---|
Planes | Directions | |
Kurdjumov–Sachs | {111}γ//{110}α | <110>γ//<111>α |
Nishiyama–Wassermann | {111}γ//{110}α | <112>γ//<110>α |
Bain | {100}γ//{100}α | <100>γ//<110>α |
Pitch | {100}γ//{110}α | <110>γ//<111>α |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Jia, Y.; Chen, X.; Wang, Y.; Wang, Z. Mechanism of Balanced Strength and Ductility in High-Strength Low-Alloy Steel. Metals 2022, 12, 1554. https://doi.org/10.3390/met12101554
Zhu Y, Jia Y, Chen X, Wang Y, Wang Z. Mechanism of Balanced Strength and Ductility in High-Strength Low-Alloy Steel. Metals. 2022; 12(10):1554. https://doi.org/10.3390/met12101554
Chicago/Turabian StyleZhu, Yuzhi, Yunke Jia, Xiaohua Chen, Yanlin Wang, and Zidong Wang. 2022. "Mechanism of Balanced Strength and Ductility in High-Strength Low-Alloy Steel" Metals 12, no. 10: 1554. https://doi.org/10.3390/met12101554
APA StyleZhu, Y., Jia, Y., Chen, X., Wang, Y., & Wang, Z. (2022). Mechanism of Balanced Strength and Ductility in High-Strength Low-Alloy Steel. Metals, 12(10), 1554. https://doi.org/10.3390/met12101554