Comparative Investigation of the Corrosion Behavior and Biocompatibility of the Different Chemical Conversion Coatings on the Magnesium Alloy Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Surface Characterization
2.3. Electrochemical Corrosion Behaviors
2.3.1. Potentiodynamic Polarization Curve
2.3.2. Immersion Experiment
2.3.3. pH Changes in Immersion Solution
2.4. Protein Adsorption
2.5. Blood Compatibility
2.5.1. Hemolysis Rate
2.5.2. Platelet Adhesion
2.6. Endothelial Cell Behaviors
2.6.1. Cell Adhesion
2.6.2. Cell Proliferation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Surface Characterization
3.2. Electrochemical Corrosion Behaviors
3.3. Protein Adsorption
3.4. Blood Compatibility
3.5. Endothelial Cell Behaviors
3.5.1. Cell Adhesion
3.5.2. Cell Proliferation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Foerst, J.R.; Gruenheck, F.; Kelm, M.; Vorpahl, M. Coronary Artery Stents: Approved First-Generation Drug-Eluting Stents. In Drug-Eluting Stents; Future Medicine Ltd.: London, UK, 2012; pp. 18–30. ISBN 978-1-78084-056-7. [Google Scholar]
- Saito, S. New Horizon of Bioabsorbable Stent. Cathet. Cardiovasc. Intervent. 2005, 66, 595–596. [Google Scholar] [CrossRef] [PubMed]
- Byrne, R.A.; Sarafoff, N.; Kastrati, A.; Schömig, A. Drug-Eluting Stents in Percutaneous Coronary Intervention: A Benefit-Risk Assessment. Drug Saf. 2009, 32, 749–770. [Google Scholar] [CrossRef] [PubMed]
- Erne, P.; Schier, M.; Resink, T.J. The Road to Bioabsorbable Stents: Reaching Clinical Reality? Cardiovasc. Interv. Radiol. 2006, 29, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Schömig, A.; Dibra, A.; Windecker, S.; Mehilli, J.; Suárez de Lezo, J.; Kaiser, C.; Park, S.-J.; Goy, J.-J.; Lee, J.-H.; Di Lorenzo, E.; et al. A Meta-Analysis of 16 Randomized Trials of Sirolimus-Eluting Stents Versus Paclitaxel-Eluting Stents in Patients with Coronary Artery Disease. J. Am. Coll. Cardiol. 2007, 50, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Shen, F. Blood Compatibility of a Ferulic Acid (FA)-Eluting PHBHHx System for Biodegradable Magnesium Stent Application. Mater. Sci. Eng. C 2015, 52, 37–45. [Google Scholar] [CrossRef]
- Chen, Y.; Dou, J.; Yu, H.; Chen, C. Degradable Magnesium-Based Alloys for Biomedical Applications: The Role of Critical Alloying Elements. J. Biomater. Appl. 2019, 33, 1348–1372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-Q.; Wang, L.; Zeng, M.-Q.; Zeng, R.-C.; Kannan, M.B.; Lin, C.-G.; Zheng, Y.-F. Biodegradation Behavior of Micro-Arc Oxidation Coating on Magnesium Alloy-from a Protein Perspective. Bioact. Mater. 2020, 5, 398–409. [Google Scholar] [CrossRef]
- Yan, W.; Lian, Y.-J.; Zhang, Z.-Y.; Zeng, M.-Q.; Zhang, Z.-Q.; Yin, Z.-Z.; Cui, L.-Y.; Zeng, R.-C. In Vitro Degradation of Pure Magnesium―the Synergetic Influences of Glucose and Albumin. Bioact. Mater. 2020, 5, 318–333. [Google Scholar] [CrossRef]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and Its Alloys as Orthopedic Biomaterials: A Review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef]
- Ford, E.S.; Mokdad, A.H. Dietary Magnesium Intake in a National Sample of U.S. Adults. J. Nutr. 2003, 133, 2879–2882. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, J.; Ruan, Y.C.; Yu, M.K.; O’Laughlin, M.; Wise, H.; Chen, D.; Tian, L.; Shi, D.; Wang, J.; et al. Implant-Derived Magnesium Induces Local Neuronal Production of CGRP to Improve Bone-Fracture Healing in Rats. Nat. Med. 2016, 22, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Atrens, A. An Innovative Specimen Configuration for the Study of Mg Corrosion. Corros. Sci. 2011, 53, 226–246. [Google Scholar] [CrossRef]
- Zeng, R.; Dietzel, W.; Witte, F.; Hort, N.; Blawert, C. Progress and Challenge for Magnesium Alloys as Biomaterials. Adv. Eng. Mater. 2008, 10, B3–B14. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and Advances in Magnesium Alloy Corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Khang, D.; Lu, J.; Yao, C.; Haberstroh, K.M.; Webster, T.J. The Role of Nanometer and Sub-Micron Surface Features on Vascular and Bone Cell Adhesion on Titanium. Biomaterials 2008, 29, 970–983. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, N.; Batra, U.; Kumar, K. Experimental Investigation and Optimization of Wire Electrical Discharge Machining for Surface Characteristics and Corrosion Rate of Biodegradable Mg Alloy. J. Mater. Eng. Perform. 2020, 29, 4117–4129. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, K.; Satsangi, P.S.; Sharma, N. Surface Modification of Biodegradable Mg-4Zn Alloy Using PMEDM: An Experimental Investigation, Optimization and Corrosion Analysis. IRBM 2021, 43, S1959031821000245. [Google Scholar] [CrossRef]
- Li, D.; Yuan, Q.; Yu, K.; Xiao, T.; Liu, L.; Dai, Y.; Xiong, L.; Zhang, B.; Li, A. Mg–Zn–Mn Alloy Extract Induces the Angiogenesis of Human Umbilical Vein Endothelial Cells via FGF/FGFR Signaling Pathway. Biochem. Biophys. Res. Commun. 2019, 514, 618–624. [Google Scholar] [CrossRef]
- Xiong, X.; Yang, Y.; Li, J.; Li, M.; Peng, J.; Wen, C.; Peng, X. Research on the Microstructure and Properties of a Multi-Pass Friction Stir Processed 6061Al Coating for AZ31 Mg Alloy. J. Magnes. Alloy. 2019, 7, 696–706. [Google Scholar] [CrossRef]
- Mhaede, M.; Pastorek, F.; Hadzima, B. Influence of Shot Peening on Corrosion Properties of Biocompatible Magnesium Alloy AZ31 Coated by Dicalcium Phosphate Dihydrate (DCPD). Mater. Sci. Eng. C 2014, 39, 330–335. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, Y.; Bi, Y.; Li, Y.; Zheng, Y. Improved Cytocompatibility of Mg-1Ca Alloy Modified by Zn Ion Implantation and Deposition. Mater. Lett. 2017, 205, 87–89. [Google Scholar] [CrossRef]
- Zeng, R.-C.; Jiang, K.; Li, S.-Q.; Zhang, F.; Cui, H.-Z.; Han, E.-H. Mechanical and Corrosion Properties of Al/Ti Film on Magnesium Alloy AZ31B. Front. Mater. Sci. 2015, 9, 66–76. [Google Scholar] [CrossRef]
- Cui, X.; Jin, G.; Li, Q.; Yang, Y.; Li, Y.; Wang, F. Electroless Ni–P Plating with a Phytic Acid Pretreatment on AZ91D Magnesium Alloy. Mater. Chem. Phys. 2010, 121, 308–313. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Li, Z.; Wei, S.; Zhang, T.; Yang, L.; Liu, S. Microstructure and Properties of In-Situ Synthesized ZrC-Al3Zr Reinforced Composite Coating on AZ91D Magnesium Alloy by Laser Cladding. Surf. Coat. Technol. 2018, 334, 471–478. [Google Scholar] [CrossRef]
- Mao, L.; Yuan, G.; Niu, J.; Zong, Y.; Ding, W. In Vitro Degradation Behavior and Biocompatibility of Mg–Nd–Zn–Zr Alloy by Hydrofluoric Acid Treatment. Mater. Sci. Eng. C 2013, 33, 242–250. [Google Scholar] [CrossRef]
- Xue, D.; Yun, Y.; Schulz, M.J.; Shanov, V. Corrosion Protection of Biodegradable Magnesium Implants Using Anodization. Mater. Sci. Eng. C 2011, 31, 215–223. [Google Scholar] [CrossRef]
- Yang, X.; Li, M.; Lin, X.; Tan, L.; Lan, G.; Li, L.; Yin, Q.; Xia, H.; Zhang, Y.; Yang, K. Enhanced In Vitro Biocompatibility/Bioactivity of Biodegradable Mg–Zn–Zr Alloy by Micro-Arc Oxidation Coating Contained Mg2SiO4. Surf. Coat. Technol. 2013, 233, 65–73. [Google Scholar] [CrossRef]
- Pan, C.-J.; Hou, Y.; Wang, Y.-N.; Gao, F.; Liu, T.; Hou, Y.-H.; Zhu, Y.-F.; Ye, W.; Wang, L.-R. Effects of Self-Assembly of 3-Phosphonopropionic Acid, 3-Aminopropyltrimethoxysilane and Dopamine on the Corrosion Behaviors and Biocompatibility of a Magnesium Alloy. Mater. Sci. Eng. C 2016, 67, 132–143. [Google Scholar] [CrossRef]
- Hornberger, H.; Virtanen, S.; Boccaccini, A.R. Biomedical Coatings on Magnesium Alloys–A Review. Acta Biomater. 2012, 8, 2442–2455. [Google Scholar] [CrossRef]
- Khan, S.A.; Miyashita, Y.; Mutoh, Y. Corrosion Fatigue Behavior of AM60 Magnesium Alloy with Anodizing Layer and Chemical-Conversion-Coating Layer: Corrosion Fatigue Behavior of Coated AM60 Magnesium Alloy. Mater. Corros. 2015, 66, 940–948. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, W. Electroless Nickel Plating on AZ91 Mg Alloy Substrate. Surf. Coat. Technol. 2006, 200, 5087–5093. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, G.; Zhang, Y.-H.; Zhao, Q. Growth and Characterization of Mg(OH)2 Film on Magnesium Alloy AZ31. Appl. Surf. Sci. 2011, 257, 6129–6137. [Google Scholar] [CrossRef]
- Mao, L.; Shen, L.; Chen, J.; Wu, Y.; Kwak, M.; Lu, Y.; Xue, Q.; Pei, J.; Zhang, L.; Yuan, G.; et al. Enhanced Bioactivity of Mg–Nd–Zn–Zr Alloy Achieved with Nanoscale MgF2 Surface for Vascular Stent Application. ACS Appl. Mater. Interfaces 2015, 7, 5320–5330. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.-S.; Lv, Z.-F.; Zhu, Y.-L.; Xu, S.-A.; Wang, H. Protection of Aluminium Foil AA8021 by Molybdate-Based Conversion Coatings. Appl. Surf. Sci. 2014, 288, 497–502. [Google Scholar] [CrossRef]
- Mao, L.; Zhu, H.; Chen, L.; Zhou, H.; Yuan, G.; Song, C. Enhancement of Corrosion Resistance and Biocompatibility of Mg-Nd-Zn-Zr Alloy Achieved with Phosphate Coating for Vascular Stent Application. J. Mater. Res. Technol. 2020, 9, 6409–6419. [Google Scholar] [CrossRef]
- Levy, G.; Aghion, E. Effect of Diffusion Coating of Nd on the Corrosion Resistance of Biodegradable Mg Implants in Simulated Physiological Electrolyte. Acta Biomater. 2013, 9, 8624–8630. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, F.; Song, L.; Zeng, R.-C.; Li, S.-Q.; Han, E.-H. Corrosion Resistance of Ceria/Polymethyltrimethoxysilane Modified Magnesium Hydroxide Coating on AZ31 Magnesium Alloy. Surf. Coat. Technol. 2017, 328, 121–133. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Gu, X.N.; Witte, F. Biodegradable Metals. Mater. Sci. Eng. R: Rep. 2014, 77, 1–34. [Google Scholar] [CrossRef]
- Montemor, M.F.; Simões, A.M.; Ferreira, M.G.S.; Carmezim, M.J. Composition and Corrosion Resistance of Cerium Conversion Films on the AZ31 Magnesium Alloy and Its Relation to the Salt Anion. Appl. Surf. Sci. 2008, 254, 1806–1814. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Hamzah, E.; Daroonparvar, M.; Saud, S.N.; Abdul-kadir, M.R. Bi-Layer Nano-TiO2/FHA Composite Coatings on Mg–Zn–Ce Alloy Prepared by Combined Physical Vapour Deposition and Electrochemical Deposition Methods. Vacuum 2014, 110, 127–135. [Google Scholar] [CrossRef]
- Chiu, K.Y.; Wong, M.H.; Cheng, F.T.; Man, H.C. Characterization and Corrosion Studies of Fluoride Conversion Coating on Degradable Mg Implants. Surf. Coat. Technol. 2007, 202, 590–598. [Google Scholar] [CrossRef]
- Yao, H.B.; Li, Y.; Wee, A.T.S. Passivity Behavior of Melt-Spun Mg–Y Alloys. Electrochim. Acta 2003, 48, 4197–4204. [Google Scholar] [CrossRef]
- Verdier, S.; Delalande, S.; van der Laak, N.; Metson, J.; Dalard, F. Monochromatized X-Ray Photoelectron Spectroscopy of the AM60 Magnesium Alloy Surface after Treatments in Fluoride-Based Ti and Zr Solutions. Surf. Interface Anal. 2005, 37, 509–516. [Google Scholar] [CrossRef]
- Chen, J.; Song, Y.; Shan, D.; Han, E.-H. In Situ Growth of Mg–Al Hydrotalcite Conversion Film on AZ31 Magnesium Alloy. Corros. Sci. 2011, 53, 3281–3288. [Google Scholar] [CrossRef]
- Zai, W.; Su, Y.; Man, H.C.; Lian, J.; Li, G. Effect of PH Value and Preparation Temperature on the Formation of Magnesium Phosphate Conversion Coatings on AZ31 Magnesium Alloy. Appl. Surf. Sci. 2019, 492, 314–327. [Google Scholar] [CrossRef]
- Verdier, S.; van der Laak, N.; Delalande, S.; Metson, J.; Dalard, F. The Surface Reactivity of a Magnesium–Aluminium Alloy in Acidic Fluoride Solutions Studied by Electrochemical Techniques and XPS. Appl. Surf. Sci. 2004, 235, 513–524. [Google Scholar] [CrossRef]
- Xu, L.; Pan, F.; Yu, G.; Yang, L.; Zhang, E.; Yang, K. In Vitro and in Vivo Evaluation of the Surface Bioactivity of a Calcium Phosphate Coated Magnesium Alloy. Biomaterials 2009, 30, 1512–1523. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Q.; Chen, B.; Yang, X. Preparation and Corrosion Resistance Studies of Nanometric Sol–Gel-Based CeO2 Film with a Chromium-Free Pretreatment on AZ91D Magnesium Alloy. Electrochim. Acta 2010, 55, 870–877. [Google Scholar] [CrossRef]
- Gray-Munro, J.E.; Strong, M. The Mechanism of Deposition of Calcium Phosphate Coatings from Solution onto Magnesium Alloy AZ31. J. Biomed. Mater. Res. 2009, 90, 339–350. [Google Scholar] [CrossRef]
- Vandrovcová, M.; Bačáková, L. Adhesion, Growth and Differentiation of Osteoblasts on Surface-Modified Materials Developed for Bone Implants. Physiol. Res. 2011, 60, 403–417. [Google Scholar] [CrossRef]
- Dou, Y.; Cai, S.; Ye, X.; Xu, G.; Huang, K.; Wang, X.; Ren, M. 45S5 Bioactive Glass–Ceramic Coated AZ31 Magnesium Alloy with Improved Corrosion Resistance. Surf. Coat. Technol. 2013, 228, 154–161. [Google Scholar] [CrossRef]
- Yan, T.; Tan, L.; Xiong, D.; Liu, X.; Zhang, B.; Yang, K. Fluoride Treatment and In Vitro Corrosion Behavior of an AZ31B Magnesium Alloy. Mater. Sci. Eng. C 2010, 30, 740–748. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, P.; Chen, S.; Zhang, B.; Yang, K. In Vitro Study on Degradation of AZ31B Magnesium Alloy with Fluoride Conversion Coating. Mater. Technol. 2017, 32, 409–414. [Google Scholar] [CrossRef]
- Song, G.; StJohn, D. Corrosion Behaviour of Magnesium in Ethylene Glycol. Corros. Sci. 2004, 46, 1381–1399. [Google Scholar] [CrossRef]
- Barajas, J.D.; Joya, J.C.; Durán, K.S.; Hernández-Barrios, C.A.; Coy, A.E.; Viejo, F. Relationship between Microstructure and Formation-Biodegradation Mechanism of Fluoride Conversion Coatings Synthesised on the AZ31 Magnesium Alloy. Surf. Coat. Technol. 2019, 374, 424–436. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Z.; Smith, C.; Sankar, J. Recent Advances on the Development of Magnesium Alloys for Biodegradable Implants. Acta Biomater. 2014, 10, 4561–4573. [Google Scholar] [CrossRef] [PubMed]
- Brash, J.L. Exploiting the Current Paradigm of Blood–Material Interactions for the Rational Design of Blood-Compatible Materials. J. Biomater. Sci. Polym. Ed. 2000, 11, 1135–1146. [Google Scholar] [CrossRef]
- Nakanishi, K.; Sakiyama, T.; Imamura, K. On the Adsorption of Proteins on Solid Surfaces, a Common but Very Complicated Phenomenon. Bioengineering 2001, 91, 233–244. [Google Scholar] [CrossRef]
- Liu, C.-L.; Zhang, Y.; Zhang, C.-Y.; Wang, W.; Huang, W.-J.; Chu, P.K. Synergistic Effect of Chloride Ion and Albumin on the Corrosion of Pure Magnesium. Front. Mater. Sci. 2014, 8, 244–255. [Google Scholar] [CrossRef]
- Roach, P.; Farrar, D.; Perry, C.C. Interpretation of Protein Adsorption: Surface-Induced Conformational Changes. J. Am. Chem. Soc. 2005, 127, 8168–8173. [Google Scholar] [CrossRef]
- Zhen, Z.; Liu, X.; Huang, T.; Xi, T.; Zheng, Y. Hemolysis and Cytotoxicity Mechanisms of Biodegradable Magnesium and Its Alloys. Mater. Sci. Eng. C 2015, 46, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Sun, Z.; Wang, Z.; Duan, T.; Xu, K.; Cai, M.; Wang, B. Corrosion and Biocompatibility Behaviours of Microarc Oxidation/Phytic Acid Coated Magnesium Alloy Clips for Use in Cholecystectomy in a Rabbit Model. RSC Adv. 2021, 11, 20730–20736. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Zheng, Y.; Cheng, Y.; Zhong, S.; Xi, T. In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys. Biomaterials 2009, 30, 484–498. [Google Scholar] [CrossRef] [PubMed]
- Gorbet, M.B.; Sefton, M.V. Biomaterial-Associated Thrombosis: Roles of Coagulation Factors, Complement, Platelets and Leukocytes. Biomaterials 2004, 25, 5681–5703. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-R.; Nguyen, T.B.L.; Min, Y.-K.; Lee, B.-T. In Vitro and In Vivo Studies of BMP-2-Loaded PCL–Gelatin–BCP Electrospun Scaffolds. Tissue Eng. Part A 2014, 20, 3279–3289. [Google Scholar] [CrossRef]
- Zhang, L.-C.; Xu, M.; Hu, Y.-D.; Gao, F.; Gong, T.; Liu, T.; Li, X.; Pan, C.-J. Biofunctionization of Biodegradable Magnesium Alloy to Improve the In Vitro Corrosion Resistance and Biocompatibility. Appl. Surf. Sci. 2018, 451, 20–31. [Google Scholar] [CrossRef]
- Trinidad, J.; Arruebarrena, G.; Marco, I.; Hurtado, I.; Sáenz de Argandoña, E. Effectivity of Fluoride Treatment on Hydrogen and Corrosion Product Generation in Temporal Implants for Different Magnesium Alloys. Proc. Inst. Mech. Eng. H 2013, 227, 1301–1311. [Google Scholar] [CrossRef]
- Vermette, P. Effects of Surface Properties and Bioactivation of Biomaterials on Endothelial Cells. Front. Biosci. 2010, S2, 239–255. [Google Scholar] [CrossRef]
- Yu, W.; Zhao, H.; Ding, Z.; Zhang, Z.; Sun, B.; Shen, J.; Chen, S.; Zhang, B.; Yang, K.; Liu, M.; et al. In Vitro and In Vivo Evaluation of MgF2 Coated AZ31 Magnesium Alloy Porous Scaffolds for Bone Regeneration. Colloids Surf. B Biointerfaces 2017, 149, 330–340. [Google Scholar] [CrossRef]
- Horbett, T.A.; Waldburger, J.J.; Ratner, B.D.; Hoffman, A.S. Cell Adhesion to a Series of Hydrophili-Hydrophobic Copolymers Studies with a Spinning Disc Apparatus. J. Biomed. Mater. Res. 1988, 22, 383–404. [Google Scholar] [CrossRef]
- Pereda, M.D.; Alonso, C.; Gamero, M.; del Valle, J.A.; Fernández Lorenzo de Mele, M. Comparative Study of Fluoride Conversion Coatings Formed on Biodegradable Powder Metallurgy Mg: The Effect of Chlorides at Physiological Level. Mater. Sci. Eng. C 2011, 31, 858–865. [Google Scholar] [CrossRef] [Green Version]
Samples | Mg | C | O | P | F | Ba |
---|---|---|---|---|---|---|
Mg | 6.3 | 41.27 | 52.43 | - | - | - |
Mg-OH | 2.99 | 29.99 | 67.02 | - | - | - |
Mg-HF | 0.35 | 44.77 | 28.09 | - | 26.78 | - |
Mg-P | 0.25 | 18.74 | 67.57 | 5.08 | 7.13 | 1.23 |
Mg-PA | 0.24 | 43.89 | 52.18 | 3.69 | - | - |
Samples | Ecorr/(V) | icorr/(A·cm−2) | d/(mm/y) |
---|---|---|---|
Mg | −1.573 | 8.16 × 10−4 | 18.5 |
Mg-OH | −1.325 | 7.901 × 10−11 | 1.79 × 10−6 |
Mg-HF | −1.553 | 3.000 × 10−6 | 6.79 × 10−2 |
Mg-P | −1.329 | 1.798 × 10−6 | 4.07 × 10−2 |
Mg-PA | −1.587 | 4.413 × 10−7 | 9.98 × 10−3 |
Samples | Mg | C | O | P | F | Ca |
---|---|---|---|---|---|---|
Mg | 7.23 | - | 66.12 | - | - | 26.65 |
Mg-OH | 8.83 | 51.95 | 39.22 | - | - | - |
Mg-HF | 4.24 | 25.64 | 58.21 | 7.22 | 3.52 | 4.68 |
Mg-P | 23.28 | 24.68 | 52.04 | - | - | - |
Mg-PA | 9.98 | 30.87 | 50.06 | 3.82 | - | 5.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, L.; Liu, X.; Liu, L.; Hong, Q.; Cheng, Y.; Gao, F.; Chen, J.; Zhang, Q.; Pan, C. Comparative Investigation of the Corrosion Behavior and Biocompatibility of the Different Chemical Conversion Coatings on the Magnesium Alloy Surfaces. Metals 2022, 12, 1644. https://doi.org/10.3390/met12101644
Meng L, Liu X, Liu L, Hong Q, Cheng Y, Gao F, Chen J, Zhang Q, Pan C. Comparative Investigation of the Corrosion Behavior and Biocompatibility of the Different Chemical Conversion Coatings on the Magnesium Alloy Surfaces. Metals. 2022; 12(10):1644. https://doi.org/10.3390/met12101644
Chicago/Turabian StyleMeng, Lingjie, Xuhui Liu, Li Liu, Qingxiang Hong, Yuxin Cheng, Fei Gao, Jie Chen, Qiuyang Zhang, and Changjiang Pan. 2022. "Comparative Investigation of the Corrosion Behavior and Biocompatibility of the Different Chemical Conversion Coatings on the Magnesium Alloy Surfaces" Metals 12, no. 10: 1644. https://doi.org/10.3390/met12101644
APA StyleMeng, L., Liu, X., Liu, L., Hong, Q., Cheng, Y., Gao, F., Chen, J., Zhang, Q., & Pan, C. (2022). Comparative Investigation of the Corrosion Behavior and Biocompatibility of the Different Chemical Conversion Coatings on the Magnesium Alloy Surfaces. Metals, 12(10), 1644. https://doi.org/10.3390/met12101644