Prediction of Green Properties of Flux Pellets Based on Improved Generalized Regression Neural Network
Abstract
:1. Introduction
2. Raw Material Analysis and Experiment Methods
2.1. Analysis of Raw Materials
2.2. Experimental Methods
2.2.1. Pelletizing Experiment
2.2.2. Experiment for Measuring the Falling Strength of Green Pellets
2.2.3. Experiment for Measuring the Compressive Strength of Green Pellets
2.2.4. Experiment for Measuring the Burst Temperature of Green Pellets
2.3. Ingredient Plan and Experimental Results
3. Data Processing
3.1. Data Expansion
3.2. Eliminate Abnormal Data
4. Algorithms and Network Models
4.1. Generalized Regression Neural Network
- Input layer
- Pattern layer
- Summation layer
- Output layer
4.2. Model Construction
4.3. Cultural Firefly Algorithm
4.4. A Neural Network Prediction Model Based on CFA
5. Error Analysis Method
5.1. Relative Error, RE
5.2. Root Mean Squared Error, RMSE
6. Model Prediction Results and Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.Q. Production and development of fluxed pellet. China Min. Mag. 2009, 18, 89–92. [Google Scholar]
- Li, J.; Han, C.C.; Yang, A.M.; Liu, W.X.; Zhang, Y.Z.; Liu, L.J.; Xiao, H. Effect of MgO on the performance of magnesian fluxed pellets. Sinter. Pelletizing 2017, 42, 31–37. [Google Scholar]
- Zhang, L.L.; Fu, G.H.; Guo, Y.F.; Chen, F.; Zheng, F.Q. Effect of basicity on quality of green fluxed pellets. Iron Steel 2019, 54, 14–18. [Google Scholar]
- Xin, Z.C. Liquid Phase Formation Behavior and Mineral Phase Regulation Mechanism of Magnesia Fluxed Pellet. Master’s Thesis, North China University of Science and Technology, Tangshan, China, 2018. [Google Scholar]
- Zhuansun, Y.X. Research on Prediction and Optimization Model for Intelligent Recommendation of Pelletizing Ingredients. Master’s Thesis, North China University of Science and Technology, Tangshan, China, 2021. [Google Scholar]
- Jiang, T.Y.; Xue, T.; Li, Z.Z.; Yang, A.M.; Li, J.; Zhang, Z.Q. Application of intelligent algorithms in pellet manufacturing process. China Metall. 2022, 32, 25–32. [Google Scholar]
- Zhao, Y.L. Application of Improved Generalized Regression Neural Network in Power and Signal Integrity of High-Speed Circuit. Master’s Thesis, Anhui University, Hefei, China, 2021. [Google Scholar]
- Xue, H.; Shao, Z.P.; Pan, J.C.; Zhang, F. Vessel traffic flow prediction based on CFA-GRNN algorithm. J. Shanghai Jiao Tong Univ. 2020, 54, 421–429. [Google Scholar]
- Wang, X.; Huang, K.; Zheng, Y.H.; Li, L.X.; Shao, F.P.; Jia, L.K.; Xu, Q.S. Combined PV power forecast based on firefly algorithm generalized regression neural network. Power Syst. Technol. 2017, 41, 455–461. [Google Scholar]
- Yan, Z.Z. Study on Pellet Quality Optimization of Hansteel. Master’s Thesis, North China University of Science and Technology, Tangshan, China, 2018. [Google Scholar]
- Wang, S.Y.; Hu, Q.H.; Sun, J.Z. Software test data augmentation method based on beetle antennae search. Comput. Eng. 2021, 47, 191–196. [Google Scholar]
- Guo, C. Hot Strip Thickness Prediction Based on General Regression Neural Network. Master’s Thesis, Automation Research and Design Institute of Metallurgical Industry, Beijing, China, 2021. [Google Scholar]
- Gabrijel, I.; Dobnikar, A. On-line identification and reconstruction of finite automata with generalized recurrent neural networks. Neural Netw. 2003, 16, 101–120. [Google Scholar] [CrossRef]
- Liu, W.; Liu, H. High voltage direct current transmission lines fault identification method based on improved VMD-MPE and general regression neural network. Sci. Technol. Eng. 2022, 22, 211–219. [Google Scholar]
- Lipton, Z.C.; Berkowitz, J.; Elkan, C. A critical review of recurrent neural networks for sequence learning. arXiv 2015, arXiv:1506.00019. [Google Scholar]
- Wang, Y.; Wang, Y.; Lui, Y.W. Generalized recurrent neural network accommodating dynamic causal modeling for functional MRI analysis. NeuroImage 2018, 178, 385–402. [Google Scholar] [CrossRef]
- Hajihosseini, A.; Maleki, F.; Lamooki, G.R.R. Bifurcation analysis on a generalized recurrent neural network with two interconnected three-neuron components. Chaos Solitons Fractals 2011, 44, 1004–1019. [Google Scholar] [CrossRef]
- Asante-Okyere, S.; Xu, Q.; Mensah, R.A.; Jin, C.; Ziggah, Y.Y. Generalized regression and feed forward back propagation neural networks in modelling flammability characteristics of polymethyl methacrylate (PMMA). Thermochim. Acta 2018, 667, 79–92. [Google Scholar] [CrossRef]
- Shang, Y.J. Study on Photovoltaic Power Short-Term Forecast Based on Improved GRNN. Master’s Thesis, Nanjing University of Posts and Telecommunications, Nanjing, China, 2018. [Google Scholar]
- Semberg, P.; Andersson, C.; Bjorkman, B. Interaction between iron oxides and olivine in magnetite pellets during reduction at 500°–1300 °C. Min. Metall. Explor. 2014, 31, 126–135. [Google Scholar]
- Zhou, M.S.; Shen, F.M.; Zhai, L.W.; Liu, J.; Zhang, H. Influence of MgO adding method on improving metallurgical properties of pellet. Iron Steel 2012, 47, 14–18. [Google Scholar]
- Xue, H.; Shao, Z.P.; Pan, J.C.; Fang, Q.L. Cultural firefly algorithm for dynamic path planning of soccer robot. Control Decis. 2018, 33, 2015–2020. [Google Scholar]
- Chen, H.D.; Zhou, D.Y.; Xiao, X.H. Research on ventilation forecast of metro platform screen door based on generalized regression neural network. China-Arab States Sci. Technol. Forum 2021, 9, 101–103. [Google Scholar]
- Liu, W.Q. Study on the Mechanism of Magnesium Flux Pellet Mineral Phase Regulation. Master’s Thesis, North China University of Science and Technology, Tangshan, China, 2021. [Google Scholar]
Sample | TFe | FeO | SiO2 | CaO | MgO | Al2O3 | S |
---|---|---|---|---|---|---|---|
PMC mineral powder | 64.30 | 26.62 | 1.06 | 0.75 | 3.56 | - | - |
Anhui powder | 65.26 | 24.98 | 5.01 | 0.41 | 0.45 | 0.52 | 0.027 |
Shahe powder | 63.26 | 25.68 | 4.12 | 1.92 | 0.77 | 0.76 | 0.23 |
Yanshan powder | 66.45 | 24.56 | 6.32 | 0.17 | 0.30 | 0.83 | 0.25 |
Limestone | - | - | 3.23 | 50.62 | 0.38 | 1.35 | - |
Light-burned magnesium powder | - | - | 5.96 | 1.79 | 84.32 | 0.98 | - |
Bentonite | - | - | 57.32 | 4.47 | 2.55 | 12.26 | - |
Sample | Colloidal Value/% | Expansion Capacity Multiple | Blue Absorption Power/g | Montmorillonite Content/% |
---|---|---|---|---|
Bentonite | 285.00 | 17.53 | 26.32 | 63.21 |
Sample | >0.15 mm | 0.15 mm~ 0.074 mm | 0.074 mm~ 0.045 mm | <0.045 mm | <0.074 mm |
---|---|---|---|---|---|
PMC mineral powder | 28.44 | 40.23 | 21.38 | 9.95 | 31.33 |
Anhui powder | 10.54 | 50.32 | 24.62 | 14.52 | 39.14 |
Shahe powder | 52.26 | 18.62 | 14.32 | 14.80 | 29.12 |
Yanshan powder | 0.46 | 20.76 | 59.31 | 19.47 | 78.78 |
Limestone | 1.56 | 80.60 | 14.26 | 3.58 | 17.84 |
Light-burned magnesium powder | 0.10 | 41.1 | 48.8 | 9.7 | 58.5 |
Bentonite | 0.00 | 5.73 | 21.85 | 72.42 | 94.27 |
Sample | R = 0.6 | R = 0.8 | R = 1.0 | R = 1.2 | R = 1.4 |
---|---|---|---|---|---|
PMC mineral powder | 19.32 | 19.41 | 19.63 | 19.55 | 19.74 |
Anhui powder | 45.32 | 44.28 | 42.09 | 40.20 | 38.35 |
Shahe powder | 5.16 | 5.29 | 5.33 | 5.48 | 5.66 |
Yanshan powder | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
Limestone | 5.37 | 7.62 | 9.43 | 10.60 | 12.74 |
Light-burned magnesium powder | 0.90 | 0.88 | 0.86 | 0.84 | 0.82 |
Bentonite | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 |
Sample | w(Si) = 3.5 | w(Si) = 4.0 | w(Si) = 4.5 | w(Si) = 5.0 | w(Si) = 5.5 |
---|---|---|---|---|---|
PMC mineral powder | 55.32 | 45.86 | 32.52 | 19.47 | 13.32 |
Anhui powder | 17.52 | 27.13 | 38.62 | 49.46 | 60.09 |
Shahe powder | 5.23 | 5.94 | 6.40 | 6.74 | 7.11 |
Yanshan powder | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
Limestone | 5.72 | 6.48 | 7.88 | 8.65 | 9.81 |
Light-burned magnesium powder | 0.00 | 0.11 | 0.52 | 0.68 | 1.22 |
Bentonite | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 |
Sample | w(Mg) = 1.8 | w(Mg) = 2.0 | w(Mg) = 2.2 | w(Mg) = 2.4 | w(Mg) = 2.6 |
---|---|---|---|---|---|
PMC mineral powder | 19.23 | 19.37 | 19.44 | 19.51 | 19.66 |
Anhui powder | 41.06 | 40.88 | 40.59 | 40.32 | 40.17 |
Shahe powder | 6.53 | 5.81 | 5.75 | 5.56 | 5.48 |
Yanshan powder | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
Limestone | 9.11 | 9.23 | 9.37 | 9.45 | 9.59 |
Light-burned magnesium powder | 0.91 | 1.23 | 1.41 | 1.65 | 1.82 |
Bentonite | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 |
Alkalinity (R) | w(SiO2)/% | w(MgO2)/% | Burst Temperature /°C | Compressive Strength /N·ball−1 | Falling Strength /N·ball−1 |
---|---|---|---|---|---|
0.60 | 5.50 | 1.80 | 549 | 10.53 | 5.71 |
0.80 | 5.50 | 1.80 | 536 | 9.85 | 4.12 |
1.00 | 5.50 | 1.80 | 530 | 9.67 | 4.75 |
1.20 | 5.50 | 1.80 | 521 | 9.38 | 4.55 |
1.40 | 5.50 | 1.80 | 448 | 10.97 | 4.66 |
1.00 | 3.50 | 1.80 | 557 | 10.52 | 4.93 |
1.00 | 4.00 | 1.80 | 533 | 11.31 | 3.52 |
1.00 | 4.50 | 1.80 | 524 | 11.21 | 3.46 |
1.00 | 5.00 | 1.80 | 513 | 9.76 | 4.74 |
1.00 | 5.50 | 1.80 | 407 | 10.92 | 3.67 |
1.00 | 5.50 | 1.80 | 520 | 9.63 | 4.61 |
1.00 | 5.50 | 2.00 | 529 | 9.87 | 4.43 |
1.00 | 5.50 | 2.20 | 545 | 10.52 | 4.22 |
1.00 | 5.50 | 2.40 | 539 | 10.45 | 4.10 |
1.00 | 5.50 | 2.60 | 536 | 10.80 | 3.48 |
Alkalinity (R) | w(SiO2)/% | w(MgO2)/% | Burst Temperature /°C | Compressive Strength /N·ball−1 | Falling Strength /N·ball−1 |
---|---|---|---|---|---|
0.50 | 5.28 | 1.70 | 492.33 | 11.53 | 5.71 |
0.50 | 5.31 | 1.75 | 521.56 | 11.85 | 4.12 |
0.50 | 5.35 | 1.83 | 518.72 | 10.67 | 4.75 |
0.55 | 5.51 | 1.84 | 521.41 | 10.38 | 4.55 |
0.55 | 5.57 | 1.84 | 448.62 | 11.97 | 4.66 |
0.55 | 5.64 | 1.82 | 557.19 | 12.13 | 4.93 |
·· | ·· | ·· | ·· | ·· | ·· |
1.48 | 5.78 | 1.90 | 524.37 | 11.21 | 3.46 |
1.51 | 5.21 | 1.86 | 453.69 | 10.87 | 4.74 |
1.53 | 5.89 | 1.85 | 387.05 | 11.92 | 3.67 |
Burst Temperature/℃ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Actual Value | 487.33 | 533.61 | 483.45 | 452.61 | 475.23 | 525.49 | 527.70 | 513.01 | 475.89 | 466.97 |
Predictive value | 482.17 | 524.13 | 471.84 | 443.50 | 483.72 | 535.57 | 530.38 | 497.33 | 463.63 | 458.98 |
RE (%) | 1.06 | 1.78 | 2.40 | 2.01 | 1.79 | 1.92 | 0.51 | 3.06 | 2.58 | 1.71 |
MRE (%) | 1.88 | RMRE (%) | 9.88 |
Compressive Strength/N·ball−1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Actual Value | 9.66 | 9.01 | 10.59 | 9.62 | 9.21 | 10.76 | 8.61 | 10.75 | 11.92 | 11.65 |
Predictive value | 9.12 | 8.82 | 10.69 | 9.85 | 8.68 | 10.29 | 8.58 | 11.06 | 11.71 | 10.99 |
RE (%) | 5.59 | 2.11 | 0.94 | 2.39 | 5.75 | 4.37 | 0.35 | 2.88 | 1.76 | 5.67 |
MRE (%) | 3.18 | RMRE (%) | 0.38 |
Falling Strength/N·ball−1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Actual value | 4.37 | 4.82 | 3.68 | 4.12 | 4.48 | 4.93 | 4.11 | 4.47 | 3.58 | 4.28 |
Predictive value | 4.50 | 5.02 | 3.58 | 3.91 | 4.63 | 5.07 | 3.97 | 4.65 | 3.45 | 4.45 |
RE (%) | 2.97 | 4.15 | 2.72 | 5.10 | 3.35 | 2.84 | 3.41 | 4.03 | 3.63 | 3.97 |
MRE (%) | 3.62 | RMRE (%) | 0.16 |
Model Error | Burst Temperature | Compressive Strength | Falling Strength |
---|---|---|---|
GRNN-MRE (%) | 12.46 | 15.73 | 20.04 |
GRNN-RMSE (%) | 15.74 | 1.33 | 2.65 |
CFA-GRNN-MRE (%) | 1.88 | 3.18 | 3.62 |
CFA-GRNN-RMSE (%) | 9.88 | 0.38 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Wang, Z.; Qi, X.; Bai, B.; Zhi, J. Prediction of Green Properties of Flux Pellets Based on Improved Generalized Regression Neural Network. Metals 2022, 12, 1840. https://doi.org/10.3390/met12111840
Xu Z, Wang Z, Qi X, Bai B, Zhi J. Prediction of Green Properties of Flux Pellets Based on Improved Generalized Regression Neural Network. Metals. 2022; 12(11):1840. https://doi.org/10.3390/met12111840
Chicago/Turabian StyleXu, Zhenghan, Zijing Wang, Xiwei Qi, Bin Bai, and Jianming Zhi. 2022. "Prediction of Green Properties of Flux Pellets Based on Improved Generalized Regression Neural Network" Metals 12, no. 11: 1840. https://doi.org/10.3390/met12111840
APA StyleXu, Z., Wang, Z., Qi, X., Bai, B., & Zhi, J. (2022). Prediction of Green Properties of Flux Pellets Based on Improved Generalized Regression Neural Network. Metals, 12(11), 1840. https://doi.org/10.3390/met12111840