Microstructure and Compressive Properties of Porous 2024Al-Al3Zr Composites
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of Zr Content on Phase and Structure Morphology of Composites
3.2. Effect of Zr Content on Mechanical Properties of Composites
3.3. Effect of Space Holder Content on Morphology and Properties of Composites
4. Conclusions
- (1)
- As the Zr content increases from 5 wt.% to 30 wt.%, the Al3Zr content gradually increases, the pore walls become denser and the number of defects decreases. The hardness of the material also increases with the increase of Al3Zr content from 84.73 HV0.1 to 145.4 HV0.1. The pressure properties and energy absorption properties first increase and then decrease, and the best overall performance is achieved with a compressive strength of 28.11 MPa and an energy absorption capacity of 11.68 MJ/m3 at a Zr content of 20 wt.%.
- (2)
- The compressive fractures of materials with different Zr contents show that Al3Zr can improve the compressive properties of the material by hindering the propagation of cracks in the pore wall, but when the Al3Zr content is too much, the pore wall will undergo brittle fracture and the performance will decrease.
- (3)
- As the space frame content increases from 50% to 70%, the relative density of the material gradually decreases from 0.47 to 0.29, and the yield strength and platform stress subsequently show a power function trend from 54.15 MPa and 53.63 MPa to 13.52 MPa and 10.51 MPa, respectively. Thus, the compressive properties and energy absorption capacity of the material gradually decrease.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Colombo, P.; Degischer, H.P. Highly Porous Metals and Ceramics. Mater. Sci. Technol. 2013, 26, 1145–1158. [Google Scholar] [CrossRef]
- Esmaeelzadeh, S.; Simchi, A.; Lehmhus, D. Effect of Ceramic Particle Addition on the Foaming Behavior, Cell Structure and Mechanical Properties of P/M AlSi7 Foam. Mater. Sci. Eng. A 2006, 424, 290–299. [Google Scholar] [CrossRef]
- Shishkin, A.; Mironov, V.; Zemchenkov, V.; Antonov, M.; Hussainova, I. Hybrid Syntactic Foams of Metal—Fly Ash Cenosphere—Clay. Key Eng. Mater. 2016, 674, 35–40. [Google Scholar] [CrossRef]
- Shishkin, A.; Drozdova, M.; Kozlov, V.; Hussainova, I.; Lehmhus, D. Vibration-Assisted Sputter Coating of Cenospheres: A New Approach for Realizing Cu-Based Metal Matrix Syntactic Foams. Metals 2017, 7, 16. [Google Scholar] [CrossRef]
- Shishkin, A.; Hussainova, I.; Kozlov, V.; Lisnanskis, M.; Leroy, P.; Lehmhus, D. Metal-Coated Cenospheres Obtained Via Magnetron Sputter Coating: A New Precursor for Syntactic Foams. J. Miner. Met. Mater. Soc. 2018, 70, 1319–1325. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Parveez, B.; Jamal, N.A.; Maleque, A.; Yusof, F.; Jamadon, N.H.; Adzila, S. Review on Advances in Porous Al Composites and the Possible Way Forward. J. Mater. Res. Technol. 2021, 14, 2017–2038. [Google Scholar] [CrossRef]
- Ning, J.; Li, Y.; Zhao, G. Simple Multi-Sections Unit-Cell Model for Sound Absorption Characteristics of Lotus-Type Porous Metals. Phys. Fluids 2019, 31, 077102. [Google Scholar]
- Wang, N.; Maire, E.; Chen, X.; Adrien, J.; Li, Y.; Amani, Y.; Hu, L.; Cheng, Y. Compressive Performance and Deformation Mechanism of the Dynamic Gas Injection Aluminum Foams. Mater. Charact. 2019, 147, 11–20. [Google Scholar] [CrossRef]
- Yang, D.-H.; Chen, J.-Q.; Wang, L.; Jiang, J.-H.; Ma, A.-B. Fabrication of Al Foam without Thickening Process through Melt-Foaming Method. J. Iron. Steel Res. Int. 2018, 25, 90–98. [Google Scholar] [CrossRef]
- Kubelka, P.; Körte, F.; Heimann, J.; Xiong, X.; Jost, N. Investigation of a Template-Based Process Chain for Investment Casting of Open-Cell Metal Foams. Adv. Eng. Mater. 2022, 24, 2100608. [Google Scholar] [CrossRef]
- Shi, X.; Xu, G.; Liang, S.; Li, C.; Guo, S.; Xie, X.; Ma, X.; Zhou, J. Homogeneous Deposition of Zinc on Three-Dimensional Porous Copper Foam as a Superior Zinc Metal Anode. ACS Sustain. Chem. Eng. 2019, 7, 17737–17746. [Google Scholar] [CrossRef]
- Jain, H.; Mondal, D.; Gupta, G.; Kumar, R.; Singh, S. Synthesis and Characterization of 316l Stainless Steel Foam Made through Two Different Removal Process of Space Holder Method. Manuf. Lett. 2020, 26, 33–36. [Google Scholar] [CrossRef]
- Inoguchi, N.; Kobashi, M.; Kanetake, N. Synthesis of Porous Al3Ti/Al Composite and Effect of Precursor Processing Condition on Cell Morphology. Mater. Trans. 2009, 50, 2609–2614. [Google Scholar] [CrossRef]
- Atturan, U.A.; Nandam, S.H.; Murty, B.; Sankaran, S. Deformation Behaviour of in-Situ Tib2 Reinforced A357 Aluminium Alloy Composite Foams under Compressive and Impact Loading. Mater. Sci. Eng. A 2017, 684, 178–185. [Google Scholar] [CrossRef]
- Morere, B.; Shahani, R.; Maurice, C.; Driver, J. The Influence of Al3Zr Dispersoids on the Recrystallization of Hot-Deformed Aa 7010 Alloys. Metall. Mater. Trans. A 2001, 32, 625–632. [Google Scholar] [CrossRef]
- Gautam, G.; Mohan, A. Effect of Zrb2 Particles on the Microstructure and Mechanical Properties of Hybrid (Zrb2+ Al3zr)/Aa5052 Insitu Composites. J. Alloys Compd. 2015, 649, 174–183. [Google Scholar] [CrossRef]
- Varin, R. Intermetallic-Reinforced Light-Metal Matrix in-Situ Composites. Met. Mater. Trans. A 2002, 33, 193–201. [Google Scholar] [CrossRef]
- Gupta, R.; Daniel, B. Strengthening Mechanisms in Al3zr-Reinforced Aluminum Composite Prepared by Ultrasonic Assisted Casting. J. Mater. Eng. Perform. 2021, 30, 2504–2513. [Google Scholar] [CrossRef]
- Pourkhorshid, E.; Enayati, M.H.; Sabooni, S.; Karimzadeh, F.; Paydar, M.H. Bulk Al–Al3zr Composite Prepared by Mechanical Alloying and Hot Extrusion for High-Temperature Applications. Int. J. Miner. Metall. Mater. 2017, 24, 937–942. [Google Scholar] [CrossRef]
- Xun, K.; Dai, W.; Liu, N.; Zhang, W.; Long, W.; Zhou, X. Effect of Sintering Temperature on Microstructure and Compressive Properties of Al3Zr/2024Al Porous Composites. Trans. Mater. HT. 2022, 43, 20–27. [Google Scholar]
- Yang, K.; Yang, X.; Liu, E.; Shi, C.; Ma, L.; He, C.; Li, Q.; Li, J.; Zhao, N. Elevated Temperature Compressive Properties and Energy Absorption Response of in-Situ Grown Cnt-Reinforced Al Composite Foams. Mater. Sci. Eng. A 2017, 690, 294–302. [Google Scholar] [CrossRef]
- Moreira, R.C.S.; Kovalenko, O.; Souza, D.; Reis, R.P. Metal Matrix Composite Material Reinforced with Metal Wire and Produced with Gas Metal Arc Welding. J. Compos. Mater. 2019, 53, 4411–4426. [Google Scholar] [CrossRef]
- Shu, Y.; Suzuki, A.; Takata, N.; Kobashi, M. Fabrication of Porous Nial Intermetallic Compounds with a Hierarchical Open-Cell Structure by Combustion Synthesis Reaction and Space Holder Method. J. Mater. Process. Technol. 2019, 264, 182–189. [Google Scholar] [CrossRef]
- Bafti, H.; Habibolahzadeh, A. Production of Aluminum Foam by Spherical Carbamide Space Holder Technique-Processing Parameters. Mater. Des. 2010, 31, 4122–4129. [Google Scholar] [CrossRef]
- Tamim, R.; Mahdouk, K. Thermodynamic Reassessment of the Al–Zr Binary System. J. Therm. Anal. Calorim. 2018, 131, 1187–1200. [Google Scholar] [CrossRef]
- Zhao, A.; Qiu, S.; Hu, Y. Effect of Parametric Variations on the Local Compression Deformation of Aluminum Foam Sandwich Panels. Mater. Trans. 2017, 58, 880–885. [Google Scholar] [CrossRef]
- Luo, Y.; Yu, S.; Li, W.; Liu, J.; Wei, M. Compressive Behavior of SiCp/AlSi9Mg Composite Foams. J. Alloys Compd. 2008, 460, 294–298. [Google Scholar] [CrossRef]
- Raj, R.E.; Daniel, B. Aluminum Melt Foam Processing for Light-Weight Structures. Mater. Manuf. Process. 2007, 22, 525–530. [Google Scholar] [CrossRef]
- Zettl, B.; Mayer, H.; Stanzl-Tschegg, S.; Degischer, H. Fatigue Properties of Aluminium Foams at High Numbers of Cycles. Mater. Sci. Eng. A 2000, 292, 1–7. [Google Scholar] [CrossRef]
- Jain, H.; Gupta, G.; Kumar, R.; Mondal, D.P. Microstructure and Compressive Deformation Behavior of Ss Foam Made through Evaporation of Urea as Space Holder. Mater. Chem. Phys. 2019, 223, 737–744. [Google Scholar] [CrossRef]
- Suzuki, A.; Kosugi, N.; Takata, N.; Kobashi, M. Microstructure and Compressive Properties of Porous Hybrid Materials Consisting of Ductile Al/Ti and Brittle Al3ti Phases Fabricated by Reaction Sintering with Space Holder. Mater. Sci. Eng. A 2020, 776, 139000. [Google Scholar] [CrossRef]
- Zhiwei, D.; Jian, C.; Binna, S. Preparation of Sic/Al Composite Foams by Spark Plasma Sintering and Dissolution and Its Compression Properties. J. Mater. Metall. 2019, 18, 121–126. [Google Scholar]
- Alizadeh, M.; Mirzaei-Aliabadi, M. Compressive Properties and Energy Absorption Behavior of Al–Al2O3 Composite Foam Synthesized by Space-Holder Technique. Mater. Des. 2012, 35, 419–424. [Google Scholar] [CrossRef]
- Yang, X.; Hu, Q.; Du, J.; Song, H.; Zou, T.; Sha, J.; He, C.; Zhao, N. Compression Fatigue Properties of Open-Cell Aluminum Foams Fabricated by Space-Holder Method. Int. J. Fatigue 2019, 121, 272–280. [Google Scholar] [CrossRef]
- Mondal, D.; Majumder, J.D.; Jha, N.; Badkul, A.; Das, S.; Patel, A.; Gupta, G. Titanium-Cenosphere Syntactic Foam Made through Powder Metallurgy Route. Mater. Des. 2012, 34, 82–89. [Google Scholar] [CrossRef]
Cu | Mg | Mn | Si | Fe | Zn | Others | Al |
---|---|---|---|---|---|---|---|
3.949 | 1.283 | 0.452 | 0.087 | 0.123 | 0.137 | 0.050 | Bal. |
Space Holder Percent/% | Mass/g | Volume/cm3 | Apparent Density/(g/cm3) | Theoretical Density/(g/cm3) |
---|---|---|---|---|
50 | 1.61 | 1 × 1 × 1.1 | 1.46 | 3.14 |
55 | 1.32 | 1 × 1 × 1.0 | 1.32 | 3.14 |
60 | 1.31 | 1 × 1 × 1.1 | 1.19 | 3.14 |
65 | 1.28 | 1 × 1 × 1.2 | 1.07 | 3.14 |
70 | 1.10 | 1 × 1 × 1.2 | 0.92 | 3.14 |
Space Holder Percent/% | Porosity/% | Intergranular Porosity Porosity/% | Relative Density |
---|---|---|---|
50 | 53.51 | 3.51 | 0.47 |
55 | 57.96 | 2.96 | 0.42 |
60 | 62.10 | 2.10 | 0.38 |
65 | 65.92 | 0.92 | 0.34 |
70 | 70.70 | 0.70 | 0.29 |
Composition | Porosity/% | Yield Stress/MPa | Plateau Stress/MPa | Reference |
---|---|---|---|---|
Al3Zr/2024Al | 53.51 | 54.15 | 53.63 | |
62.10 | 28.02 | 24.94 | Present study | |
70.70 | 13.52 | 10.51 | ||
Al3Ti/Al | ~70 | 13 | 10 | [32] |
CNT/Al | ~60 | 22.24 | 33 | [22] |
SiC/Al | ~40 | 58 | - | [33] |
Al2O3/Al | ~60 | 15 | 10 | [34] |
Al | ~50 | 17.0 | - | [35] |
~60 | 11.2 | - | ||
~70 | 4.6 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Xu, K.; Long, W.; Zhou, X. Microstructure and Compressive Properties of Porous 2024Al-Al3Zr Composites. Metals 2022, 12, 2017. https://doi.org/10.3390/met12122017
Zhang W, Xu K, Long W, Zhou X. Microstructure and Compressive Properties of Porous 2024Al-Al3Zr Composites. Metals. 2022; 12(12):2017. https://doi.org/10.3390/met12122017
Chicago/Turabian StyleZhang, Wenchang, Kun Xu, Wei Long, and Xiaoping Zhou. 2022. "Microstructure and Compressive Properties of Porous 2024Al-Al3Zr Composites" Metals 12, no. 12: 2017. https://doi.org/10.3390/met12122017
APA StyleZhang, W., Xu, K., Long, W., & Zhou, X. (2022). Microstructure and Compressive Properties of Porous 2024Al-Al3Zr Composites. Metals, 12(12), 2017. https://doi.org/10.3390/met12122017