Copper-Decorated Ti3C2Tx MXene Electrocatalyst for Hydrogen Evolution Reaction
Abstract
:1. Introduction
2. Materials
2.1. Preparation of Cu/Ti3C2Tx Catalyst
2.2. Material Characterization
2.3. Electrochemical Measurements
3. Results and Discussions
3.1. Characterization of Cu/Ti3C2Tx Catalyst
3.1.1. SEM
3.1.2. TEM
3.1.3. Physical Adsorption/Desorption Measurements of N2
3.1.4. XRD
3.1.5. XPS
3.1.6. Contact Angle Test
3.2. HER Activity in Alkaline Electrolytes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Xu, Z.; Wu, J.; Liu, K.; Guan, X. Optimal planning of distributed hydrogen-based multi-energy systems. Appl. Energy 2021, 281, 116107. [Google Scholar] [CrossRef]
- Yu, W.; Gao, Y.; Chen, Z.; Zhao, Y.; Wu, Z.; Wang, L. Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides. Chin. J. Catal. 2021, 42, 1876–1902. [Google Scholar] [CrossRef]
- Wu, J.; Zhong, W.; Yang, C.; Xu, W.; Zhao, R.; Xiang, H.; Zhang, Q.; Li, X.; Yang, N. Sulfur-vacancy rich nonstoichiometric TiS2−x/NiS heterostructures for superior universal hydrogen evolution. Appl. Catal. B Environ. 2022, 310, 121332. [Google Scholar] [CrossRef]
- Rodney, J.D.; Deepapriya, S.; Das, S.J.; Robinson, M.C.; Perumal, S.; Katlakunta, S.; Sivakumar, P.; Jung, H.; Raj, C.J. Boosting overall electrochemical water splitting via rare earth doped cupric oxide nanoparticles obtained by co-precipitation technique. J. Alloys Compd. 2022, 921, 165948. [Google Scholar] [CrossRef]
- Weng, S.X.; Chen, X. A hybrid electrolyzer splits water at 0.8V at room temperature. Nano Energy 2016, 19, 138–144. [Google Scholar] [CrossRef]
- Hughes, J.P.; Clipsham, J.; Chavushoglu, H.; Rowley-Neale, S.J.; Banks, C.E. Polymer electrolyte electrolysis: A review of the activity and stability of non-precious metal hydrogen evolution reaction and oxygen evolution reaction catalysts. Renew. Sustain. Energy Rev. 2021, 139, 110709. [Google Scholar] [CrossRef]
- Wu, H.; Feng, C.; Zhang, L.; Zhang, J.; Wilkinson, D.P. Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem. Energy Rev. 2021, 4, 473–507. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, A.; Wang, Z. Transition metal atom (Ti, V, Mn, Fe, and Co) anchored silicene for hydrogen evolution reaction. RSC Adv. 2019, 9, 26321–26326. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Liu, J.; Xu, Y.-T.; Zhao, B.; Wang, X.; Fu, X.-Z.; Sun, R.; Wong, C.-P. In situ redox growth of mesoporous Pd-Cu2O nanoheterostructures for improved glucose oxidation electrocatalysis. Sci. Bull. 2019, 64, 764–773. [Google Scholar] [CrossRef]
- Escolano Casado, G.; Ivanchenko, P.; Paul, G.; Bisio, C.; Marchese, L.; Ashrafi, A.M.; Milosavljevic, V.; Degli Esposti, L.; Iafisco, M.; Mino, L. Surface and structural characterization of Cu-exchanged hydroxyapatites and their application in H2O2 electrocatalytic reduction. Appl. Surf. Sci. 2022, 595, 153495. [Google Scholar] [CrossRef]
- Kim, W.; Kim, C.; Lee, W.; Park, J.; Kim, D. Innocuous, highly conductive, and affordable thermal interface material with copper-based multi-dimensional filler design. Biomolecules 2021, 11, 132. [Google Scholar] [CrossRef]
- Pawar, S.M.; Pawar, B.S.; Hou, B.; Kim, J.; Aqueel Ahmed, A.T.; Chavan, H.S.; Jo, Y.; Cho, S.; Inamdar, A.I.; Gunjakar, J.L.; et al. Self-assembled two-dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications. J. Mater. Chem. A 2017, 5, 12747–12751. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Zhang, Y.; Fu, P.; Zheng, Q.; Fan, Q.; Wei, P.; Zheng, L. Achieving strong thermal stability in catalytic reforming of methanol over in-situ self-activated nano Cu2O/ZnO catalyst with dual-sites of Cu species. J. Environ. Chem. Eng. 2022, 10, 107676. [Google Scholar] [CrossRef]
- Liu, X.-M.; Lu, G.Q.; Yan, Z.-F.; Beltramini, J. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2. Ind. Eng. Chem. Res. 2003, 42, 6518–6530. [Google Scholar] [CrossRef]
- Qi, Z.; Li, Z.; Hu, X.; Liu, S.; Ge, Y. Encapsulation of Cu2O micro/nanoparticles into activated carbon felt as a catalyst in organic reactions. Ind. Eng. Chem. Res. 2021, 60, 13869–13875. [Google Scholar] [CrossRef]
- Zhou, G.; He, Z.; Dong, X. Role of metal oxides in Cu-based catalysts with NaBH4 reduction for the synthesis of methanol from CO2/H2. Catal. Lett. 2021, 151, 1091–1101. [Google Scholar] [CrossRef]
- Spencer, M.S. Role of ZnO in methanol synthesis on copper catalysts. Catal. Lett. 1998, 50, 37–40. [Google Scholar] [CrossRef]
- Xia, Y.; Ma, Y.; Wu, Y.; Yi, Y.; Lin, H.; Zhu, G. Free-electrodeposited anodic stripping voltammetry sensing of Cu(II) based on Ti3C2Tx MXene/carbon black. Microchim. Acta 2021, 188, 377. [Google Scholar] [CrossRef]
- Cui, Y.; Xue, S.; Chen, X.; Bai, W.; Liu, S.; Ye, Q.; Zhou, F. Fabrication of two-dimensional MXene nanosheets loading Cu nanoparticles as lubricant additives for friction and wear reduction. Tribol. Int. 2022, 176, 107934. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, Q.; Liu, R.; Zhu, L. Hydrogen adsorption-induced catalytic enhancement over Cu nanoparticles immobilized by layered Ti3C2 MXene. Appl. Catal. B Environ. 2019, 252, 198–204. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Z.; Zhou, J.; Sun, D.; Li, H. The multiple synthesis of 2D layered MXene Ti3C2Tx/Ag/Cu composites with enhanced electrochemical properties. Ceram. Int. 2022, 48, 30524–30535. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, X.; Wei, L.; Yu, B.; Ma, D.; Ye, S. Electrodeposition of a Ni–P–TiO2/Ti3C2Tx coating with in situ grown nanoparticles TiO2 on Ti3C2Tx sheets. Coatings 2019, 9, 750. [Google Scholar] [CrossRef] [Green Version]
- Schultz, T.; Frey, N.C.; Hantanasirisakul, K.; Park, S.; May, S.J.; Shenoy, V.B.; Gogotsi, Y.; Koch, N. Surface termination dependent work function and electronic properties of Ti3C2Tx MXene. Chem. Mater. 2019, 31, 6590–6597. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.-J.; Nain, A.; Lin, Y.-F.; Tseng, Y.-T.; Li, Y.-J.; Sangili, A.; Srivastava, P.; Yu, H.-L.; Huang, Y.-F.; Huang, C.-C.; et al. Self-redox reaction driven in situ formation of Cu2O/Ti3C2Tx nanosheets boost the photocatalytic eradication of multi-drug resistant bacteria from infected wound. J. Nanobiotechnol. 2022, 20, 235. [Google Scholar] [CrossRef] [PubMed]
- Raut, S.S.; Kamble, S.P.; Kulkarni, P.S. Efficacy of zero-valent copper (Cu0) nanoparticles and reducing agents for dechlorination of mono chloroaromatics. Chemosphere 2016, 159, 359–366. [Google Scholar] [CrossRef]
- Aguilar, M.S.; Esparza, R.; Rosas, G. Synthesis of Cu nanoparticles by chemical reduction method. Trans. Nonferrous Met. Soc. China 2019, 29, 1510–1515. [Google Scholar] [CrossRef]
- Chang, J.; Bao, Q.; Zhang, C.; Zhao, X.; Cao, Z.; Wang, Y.; Li, R.; Guo, R.; Li, H.; He, J.; et al. Rapid preparation and photocatalytic properties of octahedral Cu2O@Cu powders. Adv. Powder Technol. 2021, 32, 144–150. [Google Scholar] [CrossRef]
- Chen, C.; Ren, H.; He, Y.; Zhan, Y.; Au, C.; Luo, Y.; Lin, X.; Liang, S.; Jiang, L. Unraveling the role of Cu0 and Cu+ sites in Cu/SiO2 catalysts for water-gas shift reaction. ChemCatChem 2020, 12, 4672–4679. [Google Scholar] [CrossRef]
- Li, J.-R.; Wang, S.-Q.; Zhuang, Z.-X.; Liu, Z.-G.; Guo, Z.; Huang, X.-J. In-situ synthesis of Cu/Cu2+1O/carbon spheres for the electrochemical sensing of glucose in serum. Chin. J. Anal. Chem. 2022, 50, 24–31. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, L.; Wang, J.; Liu, F.; He, J.; Liu, A.; Lv, S.; You, R.; Yan, X.; Sun, P.; et al. Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application. Sens. Actuators B Chem. 2021, 326, 128828. [Google Scholar] [CrossRef]
- Yu, C.; Huang, R.; Xie, Y.; Wang, Y.; Cong, Y.; Chen, L.; Feng, L.; Du, Q.; Sun, W.; Sun, H. In-situ synthesis of N-doped biochar encapsulated Cu(0) nanoparticles with excellent Fenton-like catalytic performance and good environmental stability. Sep. Purif. Technol. 2022, 295, 121334. [Google Scholar] [CrossRef]
- Wang, J.; Shao, H.; Ren, S.; Hu, A.; Li, M. Fabrication of porous Ni-Co catalytic electrode with high performance in hydrogen evolution reaction. Appl. Surf. Sci. 2021, 539, 148045. [Google Scholar] [CrossRef]
- Cao, S.; Shen, B.; Tong, T.; Fu, J.; Yu, J. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28, 1800136. [Google Scholar] [CrossRef]
- Feng, A.; Yu, Y.; Wang, Y.; Jiang, F.; Yu, Y.; Mi, L.; Song, L. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater. Des. 2017, 114, 161–166. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Yang, L.; Liu, D.; Cui, G.; Xie, Y. Cu2+1O/graphene nanosheets supported on three dimensional copper foam for sensitive and efficient non-enzymatic detection of glucose. RSC Adv. 2017, 7, 19312–19317. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Liu, T.; Hu, L.; Wang, Y. A facile one-pot synthesis of Cu2O/RGO nanocomposite for removal of organic pollutant. J. Phys. Chem. Solids 2013, 74, 635–640. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, X.; Zhong, Y.; Cui, L.; Wei, D.; Zheng, R.; Liu, J. Construction of hierarchical Cu2+1O@NiCoAl-layered double hydroxide nanorod arrays electrode for high-performance supercapacitor. J. Alloys Compd. 2020, 835, 155321. [Google Scholar] [CrossRef]
- Ma, Y.-Y.; Lang, Z.-L.; Yan, L.-K.; Wang, Y.-H.; Tan, H.-Q.; Feng, K.; Xia, Y.-J.; Zhong, J.; Liu, Y.; Kang, Z.-H.; et al. Highly efficient hydrogen evolution triggered by a multi-interfacial Ni/WC hybrid electrocatalyst. Energy Environ. Sci. 2018, 11, 2114–2123. [Google Scholar] [CrossRef]
- Eid, K.; Lu, Q.; Abdel-Azeim, S.; Soliman, A.; Abdullah, A.M.; Abdelgwad, A.M.; Forbes, R.P.; Ozoemena, K.I.; Varma, R.S.; Shibl, M.F. Highly exfoliated Ti3C2Tx MXene nanosheets atomically doped with Cu for efficient electrochemical CO2 reduction: An experimental and theoretical study. J. Mater. Chem. A 2022, 10, 1965–1975. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Jiu, H.; Xu, Q.; Li, X.; Song, W.; Luo, S.; Zhao, J. Metal–organic framework derived carbon-encapsulated hollow CuO/Cu2O heterostructure heterohedron as an efficient electrocatalyst for hydrogen evolution reaction. Dalton Trans. 2022, 51, 3349–3356. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Wang, Z.; Li, Y.C.; Li, J.; Li, F.; Lum, Y.; Nam, D.-H.; Chen, B.; Wicks, J.; Xu, A.; et al. Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nat. Commun. 2019, 10, 5814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, P.; Yang, T.; Li, Q.; Chen, Z.; Wang, Y.; Fu, Y.; Wan, J.; Wu, Z.; Wang, L. Hollow-structured amorphous Cu(OH)x nanowires doped with Ru for wide pH electrocatalytic hydrogen production. J. Colloid Interface Sci. 2022, 628, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- McCrum, I.T.; Koper, M.T.M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 2020, 5, 891–899. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, E.; Sun, G. Layered transition-metal hydroxides for alkaline hydrogen evolution reaction. Chin. J. Catal. 2020, 41, 574–591. [Google Scholar] [CrossRef]
- Wu, J.; Fan, J.; Zhao, X.; Wang, Y.; Wang, D.; Liu, H.; Gu, L.; Zhang, Q.; Zheng, L.; Singh, D.J.; et al. Atomically dispersed MoOx on rhodium metallene boosts electrocatalyzed alkaline hydrogen evolution. Angew. Chem. Int. Ed. 2022, 61, e202207512. [Google Scholar] [CrossRef]
- Sunny, A.T.; Mozetic, M.; Primc, G.; Mathew, S.; Thomas, S. Tunable morphology and hydrophilicity to epoxy resin from copper oxide nanoparticles. Compos. Sci. Technol. 2017, 146, 34–41. [Google Scholar] [CrossRef]
- Hashmi, M.; Ullah, S.; Ullah, A.; Khan, M.Q.; Hussain, N.; Khatri, M.; Bie, X.; Lee, J.; Kim, I.S. An optimistic approach “from hydrophobic to super hydrophilic nanofibers” for enhanced absorption properties. Polym. Test. 2020, 90, 106683. [Google Scholar] [CrossRef]
- Kim, B.K.; Kim, M.J.; Kim, J.J. Impact of surface hydrophilicity on electrochemical water splitting. ACS Appl. Mater. Interfaces 2021, 13, 11940–11947. [Google Scholar] [CrossRef]
- Vikraman, D.; Hussain, S.; Karuppasamy, K.; Feroze, A.; Kathalingam, A.; Sanmugam, A.; Chun, S.-H.; Jung, J.; Kim, H.-S. Engineering the novel MoSe2-Mo2C hybrid nanoarray electrodes for energy storage and water splitting applications. Appl. Catal. B Environ. 2020, 264, 118531. [Google Scholar] [CrossRef]
- Liu, A.; Liang, X.; Yang, Q.; Ren, X.; Gao, M.; Yang, Y.; Ma, T. Electrocatalytic synthesis of ammonia using a 2D Ti3C2 MXene loaded with copper nanoparticles. ChemPlusChem 2021, 86, 166–170. [Google Scholar] [CrossRef]
- Dong, S.; Li, Y.; Zhao, Z.; Hu, X.; Li, R.; Sun, S.; Zhang, X.; Hu, H.; Guo, L. Reparation of porous Ti-Cu alloy by one-step sintering method and application of hydrogen evolution reaction. J. Electroanal. Chem. 2022, 918, 116448. [Google Scholar] [CrossRef]
- Singh, H.; Ahmed, I.; Biswas, R.; Mete, S.; Halder, K.K.; Banerjee, B.; Haldar, K.K. Genomic DNA-mediated formation of a porous Cu2(OH)PO4/Co3(PO4)2·8H2O rolling pin shape bifunctional electrocatalyst for water splitting reactions. RSC Adv. 2022, 12, 3738–3744. [Google Scholar] [CrossRef]
- Paul, A.M.; Sajeev, A.; Nivetha, R.; Gothandapani, K.; Bhardwaj, P.; Govardhan, K.; Raghavan, V.; Jacob, G.; Sellapan, R.; Jeong, S.K.; et al. Cuprous oxide (Cu2O)/graphitic carbon nitride (g-C3N4) nanocomposites for electrocatalytic hydrogen evolution reaction. Diam. Relat. Mater. 2020, 107, 107899. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, L.; Zhang, Z.; Li, Q.; Khangale, P.; Hildebrandt, D.; Liu, X.; Feng, Q.; Qiao, S. Modulating the band structure of metal coordinated salen COFs and an in situ constructed charge transfer heterostructure for electrocatalysis hydrogen evolution. Adv. Sci. 2022, 9, 2105912. [Google Scholar] [CrossRef]
- Vineesh, T.V.; Yarmiayev, V.; Zitoun, D. Tailoring the electrochemical hydrogen evolution activity of Cu3P through oxophilic surface modification. Electrochem. Commun. 2020, 113, 106691. [Google Scholar] [CrossRef]
- Levinas, R.; Grigucevičienė, A.; Kubilius, T.; Matijošius, A.; Tamašauskaitė-Tamašiūnaitė, L.; Cesiulis, H.; Norkus, E. Femtosecond laser-ablated copper surface as a substrate for a MoS2-based hydrogen evolution reaction electrocatalyst. Materials 2022, 15, 3926. [Google Scholar] [CrossRef]
- Li, X.; Zheng, Y.; Yao, H.; Bai, J.; Yue, S.; Guo, X. Interface synergistic effect from hierarchically porous Cu(OH)2@FCN MOF/CF nanosheet arrays boosting electrocatalytic oxygen evolution. Catalysts 2022, 12, 625. [Google Scholar] [CrossRef]
- Bhat, K.S.; Nagaraja, H.S. Hydrogen evolution reaction at extreme pH conditions of copper sulfide micro-hexagons. J. Sci. Adv. Mater. Devices 2020, 5, 361–367. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, J.; Zhu, E.; Liao, L.; Lee, S.-J.; Ding, M.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 2018, 557, 696–700. [Google Scholar] [CrossRef]
- Zhu, Q.; Qu, Y.; Liu, D.; Ng, K.W.; Pan, H. Two-dimensional layered materials: High-efficient electrocatalysts for hydrogen evolution reaction. ACS Appl. Nano Mater. 2020, 3, 6270–6296. [Google Scholar] [CrossRef]
- Zhao, G.; Rui, K.; Dou, S.X.; Sun, W. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater. 2018, 28, 1803291. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Luo, F.; Xu, T.; Zhang, P.; Shi, H.; Qin, S.; Wu, J.; He, C.; Ouyang, X.; Zhang, Q.; et al. Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N–doped graphene by accelerating water dissociation. Nano Energy 2020, 68, 104301. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Shu, Q.; Chen, H.; Xing, X.; Wu, Q.; Zhang, L. Copper-Decorated Ti3C2Tx MXene Electrocatalyst for Hydrogen Evolution Reaction. Metals 2022, 12, 2022. https://doi.org/10.3390/met12122022
Wang B, Shu Q, Chen H, Xing X, Wu Q, Zhang L. Copper-Decorated Ti3C2Tx MXene Electrocatalyst for Hydrogen Evolution Reaction. Metals. 2022; 12(12):2022. https://doi.org/10.3390/met12122022
Chicago/Turabian StyleWang, Buxiang, Qing Shu, Haodong Chen, Xuyao Xing, Qiong Wu, and Li Zhang. 2022. "Copper-Decorated Ti3C2Tx MXene Electrocatalyst for Hydrogen Evolution Reaction" Metals 12, no. 12: 2022. https://doi.org/10.3390/met12122022
APA StyleWang, B., Shu, Q., Chen, H., Xing, X., Wu, Q., & Zhang, L. (2022). Copper-Decorated Ti3C2Tx MXene Electrocatalyst for Hydrogen Evolution Reaction. Metals, 12(12), 2022. https://doi.org/10.3390/met12122022