Investigation on Blood Compatibility of Cu/Ti Metal Coating Prepared via Various Bias Voltages and Copper Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cu/Ti Metal Coatings
2.2. Coating Characterization
2.3. Blood Compatibility
2.3.1. Hemolysis Ratio
2.3.2. Platelet Adhesion
2.3.3. Platelet Activation
2.4. Protein Adsorption
3. Results and Discussion
3.1. Structure and Surface Topography of Thin Films
3.2. Surface Wetting Test
3.3. Platelet Adhesion and Activation
3.4. Protein Adsorption
4. Conclusions
- (1)
- The copper content of various coatings is mainly determined by the number of copper sheets; the deposition bias was detected as a due to the influence of the quality of the coating.
- (2)
- As the deposition bias increases, the smoothness and density of the coating are first increased and then decreased.
- (3)
- The maximum amount of BSA adsorption occurs when the deposition bias voltage is −40 V. With the increase in the number of copper sheets, the adsorption amount of FIB gradually decreases.
- (4)
- The Cu/Ti coatings prepared with different bias voltages and different numbers of copper sheets significantly reduced platelet adhesion, and the degree of platelet activation on the coating surface gradually increased.
- (5)
- The results demonstrate that Cu/Ti composite coatings could improve the blood compatibility; this research result can be used for the surface modification of blood contact materials.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arora, S.; Stouffer, G.A.; Kucharska-Newton, A.M.; Qamar, A.; Vaduganathan, M.; Pandey, A.; Porterfield, D.; Blankstein, R.; Rosamond, W.D.; Bhatt, D.L.; et al. Twentyyear trends and sex differences in young adults hospitalized with acute myocardial infarction. Circulation 2019, 139, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Zong, M.; Bai, L.; Liu, Y.; Wang, X.; Zhang, X.; Huang, X.; Hang, R.; Tang, B. Antibacterial ability and angiogenic activity of Cu–Ti–O nanotube arrays. Mater. Sci. Eng. C 2017, 71, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hang, R.; Zhao, Y.; Bai, L.; Sun, Y.; Yao, X.; Jia, H.; Tang, B.; Hang, R. The effects of annealing temperature on corrosion behavior, Ni2+ release, cytocompatibility, and antibacterial ability of Ni–Ti–O nanopores on NiTi alloy. Surf. Coat. Technol. 2018, 352, 175–181. [Google Scholar] [CrossRef]
- Hang, R.; Liu, Y.; Bai, L.; Zong, M.; Wang, X.; Zhang, X.; Huang, X.; Tang, B. Electrochemical synthesis, corrosion behavior and cytocompatibility of Ni–Ti–O nanopores on NiTi alloy. Mater. Lett. 2017, 202, 5–8. [Google Scholar] [CrossRef]
- Lin, N.; Huang, X.; Zou, J.; Zhang, X.; Qin, L.; Fan, A.; Tang, B. Effects of plasma nitriding and multiple arc ion plating TiN coating on bacterial adhesion of commercial pure titanium via in vitro investigations. Surf. Coat. Technol. 2012, 209, 212–215. [Google Scholar] [CrossRef]
- Hussein, M.A.; Ankah, N.K.; Kumar, A.M.; Azeem, M.A.; Saravanan, S.; Sorour, A.A.; Al Aqeeli, N. Mechanical, biocorrosion, and antibacterial properties of nanocrystalline TiN coating for orthopedicapplications. J. Ceram. Int. 2020, 46, 18573–18583. [Google Scholar] [CrossRef]
- Liao, T.T.; Zhang, T.F.; Li, S.S.; Deng, Q.Y.; Wu, B.J.; Zhang, Y.Z.; Zhou, Y.J.; Guo, Y.B.; Leng, Y.X.; Huang, N. Biological responses of diamond-like carbon (DLC) films with different structures in biomedical application. J. Mater. Sci. Eng. C 2016, 69, 751–759. [Google Scholar] [CrossRef]
- Choudhury, D.; Ching, H.A.; Mamat, A.B.; Cizek, J.; Abu Osman, N.A.; Vrbka, M.; Hartl, M.; Krupka, I. Fabrication and characterization of DLC coated microdimples on hip prosthesis heads. J. Biomed. Mater. Res. Part B 2015, 103, 1002–1012. [Google Scholar] [CrossRef]
- Zhang, T.F.; Deng, Q.Y.; Liu, B.; Wu, B.J.; Jing, F.J.; Leng, Y.X.; Huang, N. Wear and Corrosion Properties of diamond like carbon (DLC) Coating on stainless steel, CoCrMo and Ti6Al4V substrate. Surf. Coat. Technol. 2015, 273, 12–19. [Google Scholar] [CrossRef]
- Dhandapani, V.S.; Subbiah, R.; Thangavel, E.; Arumugam, M.; Park, K.; Gasem, Z.M.; Veeraragavan, V.; Kim, D.-E. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings. Appl. Surf. Sci. 2016, 371, 262–274. [Google Scholar] [CrossRef]
- Bociaga, D.; Sobczyk-Guzenda, A.; Szymanski, W.; Jedrzejczak, A.; Jastrzebska, A.; Olejnik, A.; Swiatek, L.; Jastrzebski, K. Diamond like carbon coatings doped by Si fabricated by a multi-target DC-RF magnetron sputtering method—Mechanical properties, chemical analysis and biological evaluation. Vacuum 2017, 143, 395–406. [Google Scholar] [CrossRef]
- Peng, F.; Lin, Y.; Zhang, D.; Ruan, Q.; Tang, K.; Li, M.; Liu, X.; Chu, P.K.; Zhang, Y. Corrosion Behavior and Biocompatibility of Diamond-like Carbon-Coated Zinc: An In Vitro Study. J. ACS Omega 2021, 6, 9843–9851. [Google Scholar] [CrossRef] [PubMed]
- Sha, X.; Xiao, N.; Guan, Y.; Yi, X. A first-principles investigation on mechanical and metallic properties of titanium carbides under pressure. Mater. Sci. Technol. 2018, 34, 1953–1958. [Google Scholar] [CrossRef]
- Xiangyu, Z.; Meng, L.; Xiaojing, H.; Ruiqiang, H.; Xiaobo, H.; Yueyue, W.; Xiaohong, Y.; Bin, T. Antibacterial activity of single crystalline silver-doped anatase TiO2 nanowire arrays. J. Appl. Surf. Sci. 2016, 372, 139–144. [Google Scholar]
- Trino, L.D.; Dias, L.F.; Albano, L.G.; Bronze-Uhle, E.S.; Rangel, E.C.; Graeff, C.F.; Lisboa-Filho, P.N. Zinc Oxide Surface Functionalization and Related Effects on Corrosion Resistanceof Titanium Implants. Ceram. Int. 2018, 44, 4000–4008. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; He, X.; Gao, Y.; Zhang, X.; Yao, X.; Tang, B. Antimicrobial property, cytocompatibility and corrosion resistance of Zn-doped ZrO2/TiO2 coatings on Ti6Al4V implants. J. Mater. Sci. Eng. C 2017, 75, 7–15. [Google Scholar] [CrossRef]
- Chiang, H.-J.; Chou, H.-H.; Ou, K.-L.; Sugiatno, E.; Ruslin, M.; Waris, R.A.; Huang, C.-F.; Liu, C.-M.; Peng, P.-W. Evaluation of Surface Characteristics and Hemocompatibility on the Oxygen Plasma-Modified Biomedical Titanium. Metals 2018, 8, 513. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Zhang, W.; Qiao, Y.Q.; Jiang, X.Y.; Liu, X.; Ding, C. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012, 8, 904–915. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Wan, P.; Zhai, Z.; Mao, Z.; Ouyang, Z.; Yu, D.; Sun, Q.; Tan, L.; Ren, L.; et al. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations. Biomaterials 2016, 106, 250–263. [Google Scholar] [CrossRef]
- Pohanka, M. Copper and copper nanoparticles toxicity and their impact on basic functions in the body. Bratisl. Med. J. 2019, 120, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Kornblatt, A.P.; Nicoletti, V.G.; Travaglia, A. The neglected role of copper ions in wound healing. J. Inorg. Biochem. 2016, 161, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, D.; Shen, F.; Zhang, G.; Song, S. Hemocompatibility and anti-endothelialization of copper-titanium coating for vena cava filters. J. Surf. Coat. Technol. 2012, 206, 3501–3507. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, D.; Shen, F.; Zhang, G.; Song, S. Corrosion and ion release behavior of Cu/Ti film prepared via physical vapor deposition in vitro as potential biomaterials for cardiovascular devices. J. Appl. Surf. Sci. 2012, 258, 7286–7291. [Google Scholar] [CrossRef]
- Wojcieszak, D.; Kaczmarek, D.; Antosiak, A.; Mazur, M.; Rybak, Z.; Rusak, A.; Osekowska, M.; Poniedzialek, A.; Gamian, A.; Szponar, B. Influence of Cu-Ti thin film surface properties on antimicrobial activity and viability of living cells. J. Mater. Sci. Eng. C 2015, 56, 48–56. [Google Scholar] [CrossRef]
- Stranak, V.; Wulff, H.; Rebl, H.; Zietz, C.; Arndt, K.; Bogdanowicz, R.; Nebe, B.; Bader, R.; Podbielski, A.; Hubicka, Z.; et al. Deposition of thin titanium- copper films with antimicrobial effect by advanced magnetron sputtering methods. Mater. Sci. Eng. C 2011, 31, 1512–1519. [Google Scholar] [CrossRef]
- Ghodselahi, T.; Vesaghi, M.A.; Shafiekhani, A.; Baghizadeh, A.; Lameii, M. XPS study of the Cu@Cu2O core-shellnanoparticles. J. Appl. Surf. Sci. 2008, 255, 2730–2734. [Google Scholar] [CrossRef]
- Wu, Y.; Simonovsky, F.I.; Ratner, B.D.; Horbett, T.A. The role of adsorbed fibrinogen in platelet adhesion to polyurethane surfaces: A comparison of surface hydrophobicity, protein adsorption, monoclonal antibody binding, and platelet adhesion. J. Biomed. Mater. Res. A 2005, 74, 722–738. [Google Scholar] [CrossRef]
- Kim, C.H.; Khil, M.S.; Kim, H.Y.; Lee, H.U.; Jahng, K.Y. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J. Biomed. Mater. B 2006, 78, 283–290. [Google Scholar] [CrossRef]
- Liu, H.Q.; Siedlecki, C.A. (Eds.) Hemocompatibility of Biomaterials for Clinical Applications; Woodhead Publishing: Thorston, UK, 2018; pp. 379–394. [Google Scholar]
Sample No | Sputtering Pressure (Pa) | Sputtering Power (W) | Sputtering Bias (V) | Deposition Time (min) | Copper Number (Slice) |
---|---|---|---|---|---|
1# | 0.4 | 100 | 0 | 60 | 1 |
2# | 0.4 | 100 | −40 | 60 | 1 |
3# | 0.4 | 100 | −80 | 60 | 1 |
4# | 0.4 | 100 | −120 | 60 | 1 |
5# | 0.4 | 100 | −40 | 60 | 2 |
6# | 0.4 | 100 | −40 | 60 | 3 |
Sample | Element Component (at%) | ||
---|---|---|---|
Ti | Cu | O | |
1# | 20.04 | 0.49 | 79.47 |
2# | 21.34 | 0.52 | 78.14 |
3# | 22.91 | 0.54 | 76.55 |
4# | 23.77 | 0.53 | 75.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Liu, H.; Gao, F.; Yang, X.; Li, J.; Liu, R.; Liu, Z.; Wang, D. Investigation on Blood Compatibility of Cu/Ti Metal Coating Prepared via Various Bias Voltages and Copper Content. Metals 2022, 12, 435. https://doi.org/10.3390/met12030435
Hu Q, Liu H, Gao F, Yang X, Li J, Liu R, Liu Z, Wang D. Investigation on Blood Compatibility of Cu/Ti Metal Coating Prepared via Various Bias Voltages and Copper Content. Metals. 2022; 12(3):435. https://doi.org/10.3390/met12030435
Chicago/Turabian StyleHu, Qiong, Hengquan Liu, Fei Gao, Xi Yang, Junfeng Li, Ren Liu, Zexuan Liu, and Dongfang Wang. 2022. "Investigation on Blood Compatibility of Cu/Ti Metal Coating Prepared via Various Bias Voltages and Copper Content" Metals 12, no. 3: 435. https://doi.org/10.3390/met12030435
APA StyleHu, Q., Liu, H., Gao, F., Yang, X., Li, J., Liu, R., Liu, Z., & Wang, D. (2022). Investigation on Blood Compatibility of Cu/Ti Metal Coating Prepared via Various Bias Voltages and Copper Content. Metals, 12(3), 435. https://doi.org/10.3390/met12030435