Near Net Forming Process Optimization of 17-4PH Steel Based on High Temperature Deformation Behaviour and Microstructure Control
Abstract
:1. Introduction
2. Experimental Materials and Procedure
3. Results and Discussion
3.1. High-Temperature Rheological Properties of 17-4PH Steel
3.2. Effects of Multiple Heating Forges on Grain Size
3.3. Forming Process Optimization
3.4. Forming Process Test
4. Conclusions
- (1)
- High-temperature rheological properties of 17-4PH steel were analysed to guide the high-precision forgings in aerospace engines. Based on the data analysis, a constitutive equation was established by a dynamic recrystallization stress–strain model, and the result was applied to the numerical simulation of the forming process.
- (2)
- The grain size of forgings after single heating or double heating was above grade 6, and was 3.5–4 after three rounds of heating.
- (3)
- A preformed blank was obtained quickly by using fourth-order curve fitting. Numerical simulation was used to determine the short flow forming process within twice-heating. We obtained forgings with precise shape and qualified microstructure through shortened forming process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, C.; Zhao, S.; Zhang, J. A single stage hot forging process and die set of alternator poles. Int. J. Mater. Form. 2012, 6, 511–517. [Google Scholar] [CrossRef]
- Gao, P.F.; Fei, M.Y.; Yan, X.G.; Wang, S.B.; Li, Y.K.; Xing, L.; Wei, K.; Zhan, M.; Zhou, Z.T.; Keyim, Z. Prediction of the folding defect in die forging: A versatile approach for three typical types of folding defects. J. Manuf. Process. 2019, 39, 181–191. [Google Scholar] [CrossRef]
- Behrens, B.-A.; Chugreeva, A.; Diefenbach, J.; Kahra, C.; Herbst, S.; Nürnberger, F.; Maier, H.J. Microstructural Evolution and Mechanical Properties of Hybrid Bevel Gears Manufactured by Tailored Forming. Metals 2020, 10, 1365. [Google Scholar] [CrossRef]
- Kanani, J.B.; Lalwani, D. An experimental and FEA investigation of near-net-shape cold forging of spur gear. Mater. Today Proc. 2021, 44, 92–98. [Google Scholar] [CrossRef]
- Pruncu, C.I.; Hopper, C.; Hooper, P.A.; Tan, Z.; Zhu, H.; Lin, J.; Jiang, J. Study of the Effects of Hot Forging on the Additively Manufactured Stainless Steel Preforms. J. Manuf. Process. 2020, 57, 668–676. [Google Scholar] [CrossRef]
- Rajput, S.P.S.; Datta, S. Sustainable and green manufacturing—A narrative literature review. Mater. Today Proc. 2020, 26, 2515–2520. [Google Scholar] [CrossRef]
- Mohammadi, M.; Sadeghi, M. Near Net Shape Forging of CV Joint Outer Race. Adv. Mater. Res. 2009, 83–86, 143–149. [Google Scholar] [CrossRef]
- Lu, B.; Ou, H.; Armstrong, C.; Rennie, A. 3D die shape optimisation for net-shape forging of aerofoil blades. Mater. Des. 2009, 30, 2490–2500. [Google Scholar] [CrossRef]
- Cai, J.; Dean, T.; Hu, Z. Alternative die designs in net-shape forging of gears. J. Mater. Process. Technol. 2004, 150, 48–55. [Google Scholar] [CrossRef]
- Kumar, A.; Balaji, Y.; Prasad, N.E.; Gouda, G.; Tamilmani, K. Indigenous development and airworthiness certification of 15-5 PH pre-cipitation hardenable stainless steel for aircraft applications. Sadhana 2013, 38, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Qin, F.; Li, K.; Liu, X.; Zhou, G. Effect of hot isostatic pressing on the microstructure and mechanical properties of 17-4PH stainless steel parts fabricated by selective laser melting. Mater. Sci. Eng. A 2021, 810, 141035. [Google Scholar] [CrossRef]
- Yu, Z.; Chai, Z.; Xu, J.; Chen, J.; Chen, J.; Yu, C.; Lu, H. Achieving high strength and ductility in 17-4 PH steel with a periodic layer structure by laser direct metal depositing and aging. Mater. Sci. Eng. A 2021, 824, 141787. [Google Scholar] [CrossRef]
- Sathyanath, A.; Meena, A. Microstructural evolution and strain hardening behavior of heat-treated 17-4 PH stainless steel. Mater. Today Commun. 2020, 25, 101416. [Google Scholar] [CrossRef]
- Derazkola, H.; Gil, E.G.; Murillo-Marrodán, A.; Méresse, D. Review on Dynamic Recrystallization of Martensitic Stainless Steels during Hot Deformation: Part I—Experimental Study. Metals 2021, 11, 572. [Google Scholar] [CrossRef]
- Adomako, N.K.; Kim, S.; Yoon, J.; Lee, S.-H.; Kim, J. Finite Element Modeling of Residual Stress at Joint Interface of Titanium Alloy and 17-4PH Stainless Steel. Metals 2021, 11, 629. [Google Scholar] [CrossRef]
- Tian, J.L.; Wang, W.; Yan, W. Microstructure characteristics of segregation zone in 17-4PH stainless steel piston rod. J. Iron Steel Res. Int. 2017, 21, 718–723. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Pieja, T.; Malinowski, T.; Smusz, R.; Motyka, M. Investigation of 17-4PH steel microstructure and conditions of elevated temperature forming of turbine engine strut. J. Mater. Process. Technol. 2018, 252, 191–200. [Google Scholar] [CrossRef]
- Nikulin, S.; Rogachev, S.; Nikolaev, Y.A.; Vasiliev, S.; Belov, V.; Turilina, V.Y. High-temperature mechanical properties of low-carbon steel used for the manufacture of core catcher vessel. Prog. Nucl. Energy 2021, 142, 104015. [Google Scholar] [CrossRef]
- Cho, Y.; Gwon, H.; Kim, S.-J. Effects of C and N on high-temperature deformation behavior of 15Cr–15Mn–4Ni austenitic stainless steels. Mater. Sci. Eng. A 2021, 819, 141463. [Google Scholar] [CrossRef]
- Kumar, S.; Karmakar, A.; Nath, S.K. Construction of hot deformation processing maps for 9Cr-1Mo steel through con-ven-tional and ANN approach. Mater. Tod. Commun. 2021, 26, 101903. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, G.; Hu, B.; Zheng, X.; Wang, L.; Chen, S.; Ullah, A. A comparative study on Arrhenius-type constitutive equations and artificial neural network model to predict high-temperature deformation behaviour in 12Cr3WV steel. Comput. Mater. Sci. 2012, 62, 227–234. [Google Scholar] [CrossRef]
- Khandelwal, S.; Basu, S.; Patra, A. A Machine Learning-based surrogate modeling framework for predicting the history-dependent deformation of dual phase microstructures. Mater. Tod. Commun. 2021, 29, 102914. [Google Scholar] [CrossRef]
- Yin, J.; Hu, R.; Shu, X. Closed-die forging process of copper alloy valve body: Finite element simulation and experiments. J. Mater. Res. Technol. 2021, 10, 1339–1347. [Google Scholar] [CrossRef]
- Sheu, J.-J.; Yu, C.-H. Preform and forging process designs based on geometrical features using 2D and 3D FEM simulations. Int. J. Adv. Manuf. Technol. 2008, 44, 244–254. [Google Scholar] [CrossRef]
- Meng, F.-X.; Cai, Z.-Y.; Chen, Q.-M. Multi-objective optimization of preforming operation in near-net shape forming of complex forging. Int. J. Adv. Manuf. Technol. 2019, 105, 4359–4371. [Google Scholar] [CrossRef]
- Lee, S.; Lee, Y.; Park, C.; Yang, D. A new method of preform design in hot forging by using electric field theory. Int. J. Mech. Sci. 2002, 44, 773–792. [Google Scholar] [CrossRef]
- Yamagata, H.; Ohuchida, Y.; Saito, N.; Otsuka, M. Dynamic recrystallization and dynamic recovery of 99.99 mass% aluminum single crystal having [112] orientation. J. Mater. Sci. Lett. 2001, 20, 1947–1951. [Google Scholar] [CrossRef]
- Su, N.; Chen, M.; Zhang, W.; Xie, L.; Tang, W. Constitutive Modeling of 17-4PH Stainless Steel Sheet at Elevated Temperature and Statistical Optimization. J. Mater. Eng. Perform. 2020, 29, 1194–1205. [Google Scholar] [CrossRef]
- Wolfgarten, M.; Rudolph, F.; Hirt, G. Analysis of process forces and geometrical correlations for open-die forging with superimposed manipulator displacements. J. Mater. Process. Technol. 2020, 276, 116408. [Google Scholar] [CrossRef]
- Mirzadeh, H.; Cabrera, J.M.; Najafizadeh, A. Modelling and Prediction of Hot Deformation Flow Curves. Metall. Mater. Trans. A 2011, 43, 108–123. [Google Scholar] [CrossRef]
- Xu, Y.S.; Liu, J.T.; Nie, M.; Li, Z.G.; Ruan, X.Y. Research and application of mathematical model of stress-strain curve in metal thermal deformation. J. Appl. Sci. 1997, 15, 379–384. [Google Scholar]
- Gao, X.; Jiang, Z.; Wei, D.; Li, H.J.; Jiao, S.H.; Xu, J.; Zhang, X.M.; Han, J.T.; Chen, D.F. Constitutive analysis for hot deformation behaviour of novel bimetal consisting of pearl-itic steel and low carbon steel. Mater. Sci. Eng. A 2014, 595, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Maj, P.; Adamczyk-Cieslak, B.; Lewczuk, M.; Mizera, J.; Kut, S.; Mrugala, T. Formability, Microstructure and Mechanical Properties of Flow-Formed 17-4 PH Stainless Steel. J. Mater. Eng. Perform. 2018, 27, 6435–6442. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, F.; Natkowski, E.; Kästner, M. Modeling and simulation of interface failure in metal-composite hybrids. Compos. Sci. Technol. 2021, 214, 108965. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Das, S.; Mukhopadhyay, G.; Bhattacharyya, G.S.; Palit, P. Improving the property of a water box noz-zle made of 17-4PH steel by suitable heat treatment. Eng. Fail. Anal. 2015, 49, 137–140. [Google Scholar] [CrossRef]
- Wu, M.; Huang, Z.; Tseng, C.; Hwang, K. Microstructures, mechanical properties, and fracture behaviors of met-al-injection molded 17-4PH stainless steel. Met. Mater. Int. 2015, 21, 531–537. [Google Scholar] [CrossRef]
- You, Y.; Yan, M.; Zhang, C. Phase field simulation for grains evolution of 17-4PH steel during cyclic heat treatment. Acta Metall. Sin. (Engl. Lett.) 2013, 26, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Cui, Z.S.; Chen, F. Grain growth and δ-ferrite precipitation condition in 17-4PH steel during heating process. J. Plast. Eng. 2018, 25, 223–228. [Google Scholar]
- Zheng, Y.; Wu, Y.C. Control of δ-ferrite Content in Precipitation Hardening Stainless Steel 17-4PH. Spec. Steel 1998, 3, 36–39. [Google Scholar]
- Lara, V.H.; Fuentes, L.G.; Alvarado, O.C.; Rodriguez, A.S.; Sanchez, E.G. Hot Ductility of the 17-4 PH Stainless Steels. J. Mater. Eng. Perform. 2016, 25, 1041–1046. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Cui, Z.S. Measurement of Friction Factor in Hot Forging with Finite Element Simulation Using Upset-Extrusion Test. J. Shanghai Jiaotong Univ. 2015, 49, 1492–1496. [Google Scholar]
- Zhang, Q.; Felder, E.; Bruschi, S. Evaluation of friction condition in cold forging by using T-shape compression test. J. Mater. Process. Technol. 2009, 209, 5720–5729. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Cr | Ni | Cu | Nb | Fe |
---|---|---|---|---|---|---|---|---|---|
0.03 | 0.30 | 0.39 | 0.024 | 0.001 | 15.32 | 4.45 | 3.29 | 0.27 | Bal. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Wang, Y.; Wang, Z.; Han, J.; Xu, C. Near Net Forming Process Optimization of 17-4PH Steel Based on High Temperature Deformation Behaviour and Microstructure Control. Metals 2022, 12, 534. https://doi.org/10.3390/met12040534
Guo Y, Wang Y, Wang Z, Han J, Xu C. Near Net Forming Process Optimization of 17-4PH Steel Based on High Temperature Deformation Behaviour and Microstructure Control. Metals. 2022; 12(4):534. https://doi.org/10.3390/met12040534
Chicago/Turabian StyleGuo, Yongqiang, Yongjin Wang, Zhengyu Wang, Jingtao Han, and Chunguo Xu. 2022. "Near Net Forming Process Optimization of 17-4PH Steel Based on High Temperature Deformation Behaviour and Microstructure Control" Metals 12, no. 4: 534. https://doi.org/10.3390/met12040534
APA StyleGuo, Y., Wang, Y., Wang, Z., Han, J., & Xu, C. (2022). Near Net Forming Process Optimization of 17-4PH Steel Based on High Temperature Deformation Behaviour and Microstructure Control. Metals, 12(4), 534. https://doi.org/10.3390/met12040534