Dynamic Interaction between Dislocation and Irradiation-Induced Defects in Stainless Steels during Tensile Deformation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Materials and Pre-Irradiation Preparation
2.2. Ion Irradiation
2.3. Post-Irradiation Preparation
2.4. In-Situ TEM Observation Experiments during Tensile Deformation
3. Results
3.1. Results of the Tensile In-Situ TEM Observation
3.2. Post-Tensile TEM Observation Results
3.3. The Solute Atomic Cluster from APT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fukuya, K. Current understanding of radiation-induced degradation in light water reactor structural materials. J. Nucl. Sci. Technol. 2013, 50, 213–254. [Google Scholar] [CrossRef] [Green Version]
- Was, G.S.; Andresen, P.L. Stress Corrosion Cracking Behavior of Alloys in Aggressive Nuclear reactor Core Environments. Corrosion 2007, 63, 19–45. [Google Scholar] [CrossRef]
- Fukuya, K.; Nishioka, H.; Fujii, K. Irradiation Behavior of Stainless Steel in LWR, INSS Monograph.4; INSS: Mihama, Japan, 2009; pp. 22–36, 55–64. (In Japanese) [Google Scholar]
- Kasada, R.; Takayama, Y.; Yabuughi, K.; Kimura, A. A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques. Fusion Eng. Des. 2011, 86, 2658–2661. [Google Scholar] [CrossRef] [Green Version]
- Ast, J.; Gheidelli, M.; Furst, K.; Goken, M.; Sebastiani, M.; Korsunsky, A.M. A review of experimental approaches to fracture toughness evaluation at the micro-scale. Mater. Des. 2019, 173, 107762. [Google Scholar] [CrossRef]
- Ghidelli, M.; Orekhov, A.; Li Bassi, A.; Terraneo, G.; Djemia, P.; Abadias, G.; Nord, M.; Beche, A.; Gauquelin, N.; Verbeeck, J.; et al. Novel class of nanostructured metallic glass films with superior and tunable mechanical properties. Acta Mater. 2021, 213, 116955. [Google Scholar] [CrossRef]
- Tougou, K.; Onitsuka, T.; Fukumoto, K.-I.; Uno, M.; Muta, H. The study of hardening evaluation of pure Zr with δ-hydrides generation by the dynamic in-situ metallic structure observation and nano-indentation hardness test. J. Nucl. Mater. 2018, 511, 284–296. [Google Scholar] [CrossRef]
- Tougou, K.; Shikata, A.; Kawase, U.; Onitsuka, T.; Fukumoto, K. In-situ TEM observation of dynamic interaction between dislocation and cavity in BCC metals in tensile deformation. J. Nucl. Mater. 2015, 465, 843–848. [Google Scholar] [CrossRef]
- Nogiwa, K.; Yamamoto, T.; Fukumoto, K.; Matsui, H.; Nagai, Y.; Yubuta, K.; Hasegawa, M. In-Situ TEM observation of dislocation movement through the ultrafine obstacles in an Fe alloy. J. Nucl. Mater. 2002, 307–311, 946–950. [Google Scholar] [CrossRef]
- Kohyama, A.; Katoh, Y.; Jimbo, K. Radiation Damage Study by Advanced Dual-Ion Irradiation Methods. Mater. Trans. 2004, 45, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The Stopping and Range of Ions in Matter. Nucl. Instrum. Meth. Phys. Res. B 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- High Voltage TEM, The Ultramicroscopy Research Center. Available online: https://www.hvem.kyushu-u.ac.jp/en/facility_data01.html (accessed on 1 April 2022).
- Fujii, K.; Fukuya, K. Irradiation-induced microchemical changes in highly irradiated 316 stainless steel. J. Nucl. Mater. 2016, 469, 82–88. [Google Scholar] [CrossRef]
- Mabuchi, T.; Fukumoto, K.-I. Thermal Stability and Hardening Contribution of Solute Atomic Clusters Formed in Ion-Irradiated Stainless Steel Model Alloys. Master’s Thesis, University of Fukui, Fukui, Japan, 2021. (In Japanese). [Google Scholar]
- Edwards, D.J.; Simonen, E.P.; Bruemmer, S.M. Evolution of fine-scale defects in stainless steels neutron-irradiated at 275 °C. J. Nucl. Mater. 2003, 317, 13–31. [Google Scholar] [CrossRef]
- Lucas, G.E. The evolution of mechanical property change in irradiated austenitic stainless steels. J. Nucl. Mater. 1993, 206, 287–305. [Google Scholar] [CrossRef]
- Was, G.S. Fundamentals of Radiation Materials Science, Fundamentals of Radiation Materials Science; Springer: Berlin/Heidelberg, Germany, 2007; p. 608. [Google Scholar]
- Fukumoto, K.-I.; Mabuchi, T.; Yabuuchi, K.; Fujii, K. Irradiation hardening of stainless steel model alloy after Fe-ion irradiation and post-irradiation annealing treatment. J. Nucl. Mater. 2021, 557, 153296. [Google Scholar] [CrossRef]
- Toyama, T.; Nozawa, Y.; Van Renterghem, W.; Matsukawa, Y.; Hatakeyama, M.; Nagai, Y.; Al Mazouzi, A.; Van Dyck, S. Irradiation-induced precipitates in a neutron irradiated 304 stainless steel studied by three-dimensional atom probe. J. Nucl. Mater. 2011, 418, 62–68. [Google Scholar] [CrossRef]
- Jiao, Z.; Was, G.S. Novel features of radiation-induced segregation and radiation-induced precipitation in austenitic stainless steels. Acta Mater. 2011, 59, 1220–1238. [Google Scholar] [CrossRef]
- Foreman, A.J.E.; Makin, M.J. Dislocation movement through random arrays of obstacles. Philos. Mag. 1966, 14, 911–924. [Google Scholar] [CrossRef]
No | Projectile Ion | Ion Energy | Irr. Temp. | Irradiation Period | Peak Damage |
---|---|---|---|---|---|
1 | Fe3+ | 6.4 MeV | 300 °C | 120 min | 7.1 dpa |
2 | Fe3+ | 6.4 MeV | 200 °C | 300 min | 22.5 dpa |
Sample | Frank Loop | Black Dot | ||
---|---|---|---|---|
Mean Diameter | Density (Counts) | Mean Diameter | Density (Counts) | |
1 | 6.3 ± 2.7 nm | 4.3 × 1022/m3 (226) | 3.2 ± 1.9 nm | 5.8 × 1022/m3 (545) |
2 | 8.4 ± 3.1 nm | 3.7 × 1022/m3 (22) | 2.7 ± 1.4 nm | 2.7 × 1023/m3 (200) |
Sample | Mean Diameter | Density (Count Number) |
---|---|---|
1 | 2.6 ± 0.6 nm | 4.3 × 1023/m3 (55) |
2 * | 2.2 ± 0.4 nm | 2.1 × 1024/m3 (108) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukumoto, K.-i.; Umehara, K.; Yabuuchi, K. Dynamic Interaction between Dislocation and Irradiation-Induced Defects in Stainless Steels during Tensile Deformation. Metals 2022, 12, 762. https://doi.org/10.3390/met12050762
Fukumoto K-i, Umehara K, Yabuuchi K. Dynamic Interaction between Dislocation and Irradiation-Induced Defects in Stainless Steels during Tensile Deformation. Metals. 2022; 12(5):762. https://doi.org/10.3390/met12050762
Chicago/Turabian StyleFukumoto, Ken-ichi, Kohei Umehara, and Kiyohiro Yabuuchi. 2022. "Dynamic Interaction between Dislocation and Irradiation-Induced Defects in Stainless Steels during Tensile Deformation" Metals 12, no. 5: 762. https://doi.org/10.3390/met12050762
APA StyleFukumoto, K.-i., Umehara, K., & Yabuuchi, K. (2022). Dynamic Interaction between Dislocation and Irradiation-Induced Defects in Stainless Steels during Tensile Deformation. Metals, 12(5), 762. https://doi.org/10.3390/met12050762