Combining Heat Treatment and High-Pressure Torsion to Enhance the Hardness and Corrosion Resistance of A356 Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure Pre- and Post-Heat Treatment
3.2. HPTed Microstructure after 0.75 Turn Pre- and Post-T6
3.3. HPTed Microstructure after Five Turns Pre- and Post-T6
3.4. Hardness of the HPT of the A356 Al Alloy Pre- and Post-T6
3.5. Corrosion Resistance of the HPTed A356 Al Alloy
3.5.1. Surface Morphology
3.5.2. Potentiodynamic Test
Samples | Ecorr (V) | Icorr A/cm2 | Rp (Ω·cm2) | Βc (V·Dec−1) | Βa (V·Dec−1) | CR (mm·Year−1) |
---|---|---|---|---|---|---|
As-cast | −0.698 | 3.894 × 10−6 | 5.212 × 103 | 0.642 | 0.0504 | 0.0424 |
As-cast T6, 0.75 turn | −0.708 | 1.021 × 10−6 | 2.977 × 104 | 0.421 | 0.0375 | 0.012 |
As-cast T6, 5 turns | −0.710 | 2.233 × 10−7 | 8.870 × 104 | 0.332 | 0.0354 | 0.00295 |
4. Conclusions
- An ultrafine-microstructure hypoeutectic A356 Al alloy with a homogenous distribution of eutectic intermetallic and Si particles was achieved by combining heat treatment and HPT processing through five revolutions at room temperature.
- The hardness of the hypoeutectic A356 Al alloy was significantly improved with the increasing number of HPT turns.
- The corrosion resistance of the HPTed heat-treated A356 Al alloy sample was significantly enhanced due to the microstructure refinement and redistribution of the eutectic phase in the Al matrix, which resulted in a reduced galvanic potential difference. The HPTed A356 Al alloy has the lowest current density 2.233 × 10−7 A/cm2, due to the combination of heat treatment and HPT process. The favourable corrosion resistance was attributed to the refined microstructure and the redistribution of the eutectic phase that prevented the occurrences of micro-galvanic cells on the alloy surface’s protective layer.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anasyida, A.S.; Daud, A.R.; Ghazali, M.J. Dry sliding wear behaviour of Al-12Si-4Mg alloy with cerium addition. Mater. Des. 2010, 31, 365–374. [Google Scholar] [CrossRef]
- Ashiri, R.; Niroumand, B.; Karimzadeh, F. Physical, mechanical and dry sliding wear properties of an Al-Si-Mg-Ni-Cu alloy under different processing conditions. J. Alloys Compd. 2014, 582, 213–222. [Google Scholar] [CrossRef]
- Fabrizi, A.; Ferraro, S.; Timelli, G. The influence of Sr, Mg and Cu addition on the microstructural properties of a secondary AlSi9Cu3 (Fe) die casting alloy. Mater. Charact. 2013, 85, 13–25. [Google Scholar] [CrossRef]
- Ghazali, M.J.; Rainforth, W.M.; Jones, H. The wear of wrought aluminium alloys under dry sliding conditions. Tribol. Int. 2007, 40, 160–169. [Google Scholar] [CrossRef]
- Galvin, E.; O’Brien, D.; Cummins, C.; Mac Donald, B.J.; Lally, C. A strain-mediated corrosion model for bioabsorbable metallic stents. Acta Biomater. 2017, 55, 505–517. [Google Scholar] [CrossRef]
- Haghdadi, N.; Zarei-Hanzaki, A.; Abedi, H.R.; Sabokpa, O. The effect of thermomechanical parameters on the eutectic silicon characteristics in a non-modified cast A356 aluminum alloy. Mater. Sci. Eng. A 2012, 549, 93–99. [Google Scholar] [CrossRef]
- Harun, M.; Talib, I.A.; Daud, A.R. Effect of element additions on wear property of eutectic aluminium-silicon alloys. Wear 1996, 194, 54–59. [Google Scholar] [CrossRef]
- Olofsson, J.; Svensson, I.L.; Lava, P.; Debruyne, D. Characterisation and investigation of local variations in mechanical behaviour in cast aluminium using gradient solidification, Digital Image Correlation and finite element simulation. Mater. Des. 2014, 56, 755–762. [Google Scholar] [CrossRef] [Green Version]
- Gebril, M.A.; Omar, M.Z.; Mohamed, I.F.; Othman, N.K. Microstructural Evaluation and Corrosion Resistance of Semisolid Cast A356 Alloy Processed by Equal Channel Angular Pressing. Metals 2019, 9, 303. [Google Scholar] [CrossRef] [Green Version]
- Buarzaiga, M.M.; Thorpe, S.J. Corrosion behavior of as-cast, silicon carbide particulate-aluminum alloy metal-matrix composites. Corrosion 1994, 50, 176–185. [Google Scholar] [CrossRef]
- Mingo, B.; Arrabal, R.; Pardo, A.; Matykina, E.; Skeldon, P. 3D study of intermetallics and their effect on the corrosion morphology of rheocast aluminium alloy. Mater. Charact. 2016, 112, 122–128. [Google Scholar] [CrossRef]
- Arrabal, R.; Mingo, B.; Pardo, A.; Mohedano, M.; Matykina, E.; Rodríguez, I. Pitting corrosion of rheocast A356 aluminium alloy in 3.5 wt.% NaCl solution. Corros. Sci. 2013, 73, 342–355. [Google Scholar] [CrossRef]
- Davis, J.R. Aluminum and Aluminum Alloys; ASM International: Material Park, OH, USA, 2001; p. 66. [Google Scholar] [CrossRef]
- Tahamtan, S.; Fadavi Boostani, A. Evaluation of pitting corrosion of thixoformed A356 alloy using a simulation model. Trans. Nonferrous Met. Soc. China 2010, 20, 1702–1706. [Google Scholar] [CrossRef]
- Tahamtan, S.; Fadavi Boostani, A. Quantitative analysis of pitting corrosion behavior of thixoformed A356 alloy in chloride medium using electrochemical techniques. Mater. Des. 2009, 30, 2483–2489. [Google Scholar] [CrossRef]
- Park, C.; Kim, S.; Kwon, Y.; Lee, Y.; Lee, J. Mechanical and corrosion properties of rheocast and low-pressure cast A356-T6 alloy. Mater. Sci. Eng. A 2005, 391, 86–94. [Google Scholar] [CrossRef]
- Gebril, M.A.; Omar, M.Z.; Mohamed, I.F.; Othman, N.K.; Abdelgnei, M.A.H. Corrosion Improvement and Microstructure Evaluation of SEM-Solid A356 Alloy by Ecap Process. Proc. J. Phys. Conf. Ser. 2018, 1082, 12110. [Google Scholar] [CrossRef]
- Mohamed, A.M.A.; Samuel, F.H. A Review on the Heat Treatment of Al-Si-Cu/Mg Casting Alloys. In Heat Treatment-Conventional and Novel Applications; InTech: Rijeka, Croatia, 2012; pp. 55–72. [Google Scholar] [CrossRef]
- Zhilyaev, A.P.; Langdon, T.G. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 2008, 53, 893–979. [Google Scholar] [CrossRef]
- Lee, S.; Edalati, K.; Horita, Z. Microstructures and mechanical properties of pure V and Mo processed by high-pressure torsion. Mater. Trans. 2010, 51, 1072–1079. [Google Scholar] [CrossRef] [Green Version]
- Ikoma, Y.; Hayano, K.; Edalati, K.; Saito, K.; Guo, Q.; Horita, Z. Phase transformation and nanograin refinement of silicon by processing through high-pressure torsion. Appl. Phys. Lett. 2012, 101, 121908. [Google Scholar] [CrossRef]
- Cubero-Sesin, J.M.; Horita, Z. Powder consolidation of Al-10 wt% Fe alloy by high-pressure torsion. Mater. Sci. Eng. A 2012, 558, 462–471. [Google Scholar] [CrossRef]
- Mohamed, I.F.; Masuda, T.; Lee, S.; Edalati, K.; Horita, Z.; Hirosawa, S.; Matsuda, K.; Terada, D.; Omar, M.Z. Strengthening of A2024 alloy by high-pressure torsion and subsequent aging. Mater. Sci. Eng. A 2017, 704, 112–118. [Google Scholar] [CrossRef]
- Sha, G.; Tugcu, K.; Liao, X.Z.; Trimby, P.W.; Murashkin, M.; Valiev, R.Z.; Ringer, S.P. Strength, grain refinement and solute nanostructures of an Al--Mg--Si alloy (AA6060) processed by high-pressure torsion. Acta Mater. 2014, 63, 169–179. [Google Scholar] [CrossRef]
- Bryła, K.; Morgiel, J.; Faryna, M.; Edalati, K.; Horita, Z. Effect of high-pressure torsion on grain refinement, strength enhancement and uniform ductility of EZ magnesium alloy. Mater. Lett. 2018, 212, 323–326. [Google Scholar] [CrossRef]
- El Aal, M.I.A.; Kim, H.S. Wear properties of high pressure torsion processed ultrafine grained Al-7% Si alloy. Mater. Des. 2014, 53, 373–382. [Google Scholar] [CrossRef]
- Lee, H.J.; Han, J.K.; Janakiraman, S.; Ahn, B.; Kawasaki, M.; Langdon, T.G. Significance of grain refinement on microstructure and mechanical properties of an Al-3% Mg alloy processed by high-pressure torsion. J. Alloys Compd. 2016, 686, 998–1007. [Google Scholar] [CrossRef] [Green Version]
- Sauvage, X.; Lee, S.; Matsuda, K.; Horita, Z. Origin of the influence of Cu or Ag micro-additions on the age hardening behavior of ultrafine-grained Al-Mg-Si alloys. J. Alloys Compd. 2017, 710, 199–204. [Google Scholar] [CrossRef]
- Ralston, K.D.; Fabijanic, D.; Birbilis, N. Effect of grain size on corrosion of high purity aluminium. Electrochim. Acta 2011, 56, 1729–1736. [Google Scholar] [CrossRef]
- Son, I.; Nakano, H.; Oue, S.; Kobayashi, S.; Fukushima, H.; Horita, Z. Effect of equal-channel angular pressing on pitting corrosion of pure aluminum. Int. J. Corros. 2012, 2012, 450854. [Google Scholar] [CrossRef] [Green Version]
- Brunner, J.G.; Birbilis, N.; Ralston, K.D.; Virtanen, S. Impact of ultrafine-grained microstructure on the corrosion of aluminium alloy AA2024. Corros. Sci. 2012, 57, 209–214. [Google Scholar] [CrossRef]
- Kumar Singh, A.; Ghosh, S.; Mula, S. Simultaneous improvement of strength, ductility and corrosion resistance of Al2024 alloy processed by cryoforging followed by ageing. Mater. Sci. Eng. A 2016, 651, 774–785. [Google Scholar] [CrossRef]
- El-Garhy, G.; El Mahallawy, N.; Shoukry, M.K. Effect of grain refining by cyclic extrusion compression (CEC) of Al-6061 and Al-6061/SiC on wear behavior. J. Mater. Res. Technol. 2021, 12, 1886–1897. [Google Scholar] [CrossRef]
- Sakthivel, C.; Kumar, V.S.; Iqbal, U.M. Effects of prior annealing on the mechanical properties of a twist-extruded aa 7075 aluminum alloy. Mater. Tehnol. 2020, 54, 17–23. [Google Scholar] [CrossRef]
- Elizalde, S.; Ezequiel, M.; Figueroa, I.A.; Cabrera, J.M.; Braham, C.; Gonzalez, G. Microstructural evolution and mechanical behavior of an al-6061 alloy processed by repetitive corrugation and straightening. Metals 2020, 10, 489. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Nie, M.; Wang, C.T.; Wang, S.C.; Gao, N. Microhardness and corrosion properties of hypoeutectic Al-7Si alloy processed by high-pressure torsion. Mater. Des. 2015, 83, 193–202. [Google Scholar] [CrossRef]
- Nakano, H.; Yamaguchi, H.; Yamada, Y.; Oue, S.; Son, I.; Horita, Z.; Koga, H. Effects of High-Pressure Torsion on the Pitting Corrosion Resistance of Aluminum—Iron Alloys. Mater. Trans. 2013, 54, 1642–1649. [Google Scholar] [CrossRef] [Green Version]
- Cubero-Sesin, J.M.; Horita, Z. Strengthening via Microstructure Refinement in Bulk Al-4 mass% Fe Alloy Using High-Pressure Torsion. Mater. Trans. 2012, 53, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.T.; Hussain, Z.; Anasyida, A.S.; Huy, T.D.; Almanar, I.P. Influence of Semi-Solid Casting and Equal Channel Pressing on Microstructure of a Hypoeutectic Al-Si Alloy. In Materials Science Forum; Trans Tech Publications Ltd.: Bäch SZ, Switzerland, 2015; Volume 819, pp. 9–14. [Google Scholar] [CrossRef]
- Nejadseyfi, O.; Shokuhfar, A.; Dabiri, A.; Azimi, A. Combining equal-channel angular pressing and heat treatment to obtain enhanced corrosion resistance in 6061 aluminum alloy. J. Alloys Compd. 2015, 648, 912–918. [Google Scholar] [CrossRef]
- Natori, K.; Utsunomiya, H.; Tanaka, T. Improvement in formability of semi-solid cast hypoeutectic Al-Si alloys by equal-channel angular pressing. J. Mater. Process. Technol. 2017, 240, 240–248. [Google Scholar] [CrossRef]
- Gebril, M.A.; Omar, M.Z.; Othman, N.K.; Mohamed, I.F. Microstructural Refinement and Corrosion Resistance Improvement of Heat-Treated A356 Alloy Processed by Equal Channel Angular Pressing. Sains Malays. 2019, 48, 2749–2757. [Google Scholar] [CrossRef]
- Langdon, T.G. The principles of grain refinement in equal-channel angular pressing. Mater. Sci. Eng. A 2007, 462, 3–11. [Google Scholar] [CrossRef]
- Saito, Y. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scr. Mater. 1998, 39, 1221–1227. [Google Scholar] [CrossRef]
- Łyszkowski, R. Influence of Strain Route Changes on the Microstructure and Mechanical Properties of CuZn36 Alloy during Cross Channel Extrusion CCE. Materials 2022, 15, 1124. [Google Scholar] [CrossRef] [PubMed]
- Rooy, E.L.; Linden, J.H.L. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. In Van ASM Metals Handbook; ASM International: Materials Park, OH, USA, 1990; Volume 2, pp. 3330–3345. [Google Scholar] [CrossRef]
- Cepeda-Jiménez, C.M.; García-Infanta, J.M.; Ruano, O.A.; Carreño, F. Mechanical properties at room temperature of an Al-Zn-Mg-Cu alloy processed by equal channel angular pressing. J. Alloys Compd. 2011, 509, 8649–8656. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M. Effects of T6 heat treatment on the microstructure, tensile properties, and fracture behavior of the modified A356 alloys. J. Mater. 2017, 36, 243–249. [Google Scholar] [CrossRef]
- Möller, H.; Govender, G.; Stumpf, W. Factors influencing tensile mechanical properties of Al-7Si-Mg casting alloys A356/7. In Light Metals 2012; Springer: Cham, Switzerland, 2012; pp. 467–471. [Google Scholar]
- Loucif, A.; Figueiredo, R.B.; Baudin, T.; Brisset, F.; Langdon, T.G. Microstructural evolution in an Al-6061 alloy processed by high-pressure torsion. Mater. Sci. Eng. A 2010, 527, 4864–4869. [Google Scholar] [CrossRef]
- Nie, M.; Wang, C.T.; Qu, M.; Gao, N.; Wharton, J.A.; Langdon, T.G. The corrosion behaviour of commercial purity titanium processed by high-pressure torsion. J. Mater. Sci. 2014, 49, 2824–2831. [Google Scholar] [CrossRef]
- Ghosh, K.S.; Gao, N.; Starink, M.J. Characterisation of high pressure torsion processed 7150 Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A 2012, 552, 164–171. [Google Scholar] [CrossRef]
- Barbucci, A.; Bruzzone, G.; Delucchi, M.; Panizza, M.; Cerisola, G. Breakdown of passivity of aluminium alloys by intermetallic phases in neutral chloride solution. Intermetallics 2000, 8, 305–312. [Google Scholar] [CrossRef]
- Goodarzy, M.H.; Arabi, H.; Boutorabi, M.A.; Seyedein, S.H.; Najafabadi, S.H.H. The effects of room temperature ECAP and subsequent aging on mechanical properties of 2024 Al alloy. J. Alloys Compd. 2014, 585, 753–759. [Google Scholar] [CrossRef]
- Callister, W.D., Jr.; Rethwisch, D.G. Fundamentals of Materials Science and Engineering: An Integrated Approach; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Di Schino, A.; Kenny, J.M. Effects of the grain size on the corrosion behavior of refined AISI 304 austenitic stainless steels. J. Mater. Sci. Lett. 2002, 21, 1631–1634. [Google Scholar] [CrossRef]
- Musa, A.Y.; Mohamad, A.B.; Al-Amiery, A.A.; Tien, L.T. Galvanic corrosion of aluminum alloy (Al2024) and copper in 1.0 M hydrochloric acid solution. Korean J. Chem. Eng. 2012, 29, 818–822. [Google Scholar] [CrossRef] [Green Version]
- Yahya, S.; Rahim, A.A. Inhibitive Behaviour of Corrosion of Aluminium Alloy in NaCl by Mangrove Tannin. Sains Malays. 2011, 40, 953–957. [Google Scholar]
- Inturi, R.B.; Szklarska-Smialowska, Z. Localized corrosion of nanocrystalline 304 type stainless steel films. Corrosion 1992, 48, NACE-92050398. [Google Scholar] [CrossRef]
- Rashida, S.; Islamia, N.; Ariffina, A.K.; Ridhab, M.; Fonnab, S. The effect of immersion time on the corrosion behavior of SUS304 in brine using half-cell potential measurement. Polarization 2016, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Krishna, K.G.; Sivaprasad, K.; Narayanan, T.S.N.S.; Kumar, K.C.H. Localized corrosion of an ultrafine grained Al-4Zn-2Mg alloy produced by cryorolling. Corros. Sci. 2012, 60, 82–89. [Google Scholar] [CrossRef]
- Akiyama, E.; Zhang, Z.; Watanabe, Y. Effects of severe plastic deformation on the corrosion behavior of aluminum alloys. J. Solid State Electrochem. 2009, 13, 277–282. [Google Scholar] [CrossRef]
- Dan, S.; Jiang, J.; Lin, P.; Yang, D. Corrosion behavior of ultra-fine grained industrial pure Al fabricated by ECAP. Trans. Nonferrous Met. Soc. China 2009, 19, 1065–1070. [Google Scholar]
- Parfenov, E.V.; Kulyasova, O.B.; Mukaeva, V.R.; Mingo, B.; Farrakhov, R.G.; Cherneikina, Y.V.; Yerokhin, A.; Zheng, Y.F.; Valiev, R.Z. Influence of ultra-fine grain structure on corrosion behaviour of biodegradable Mg-1Ca alloy. Corros. Sci. 2020, 163, 108303. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gebril, M.A.; Omar, M.Z.; Mohamed, I.F.; Othman, N.K.; Irfan, O.M. Combining Heat Treatment and High-Pressure Torsion to Enhance the Hardness and Corrosion Resistance of A356 Alloy. Metals 2022, 12, 853. https://doi.org/10.3390/met12050853
Gebril MA, Omar MZ, Mohamed IF, Othman NK, Irfan OM. Combining Heat Treatment and High-Pressure Torsion to Enhance the Hardness and Corrosion Resistance of A356 Alloy. Metals. 2022; 12(5):853. https://doi.org/10.3390/met12050853
Chicago/Turabian StyleGebril, Mohamed Abdelgawad, Mohd Zaidi Omar, Intan Fadhlina Mohamed, Norinsan Kamil Othman, and Osama M. Irfan. 2022. "Combining Heat Treatment and High-Pressure Torsion to Enhance the Hardness and Corrosion Resistance of A356 Alloy" Metals 12, no. 5: 853. https://doi.org/10.3390/met12050853