A Novel Approach to Friction Drilling Process: Experimental and Numerical Study on Friction Drill Joining of Dissimilar Materials AISI304/AL6061
Abstract
:1. Introduction
2. Methodology of Work
2.1. Experimental Setup
2.2. Development of FEM Simulation Modelling
3. Results and Discussion
3.1. Experimental Analysis
3.2. Numerical Analysis
4. Conclusions
- The experimental results of thrust force line graphs for the friction drilling of AISI304, with a thickness of 3 mm, and friction drill joining of AISI304 with a thickness of 3 mm and Al6061 with a thickness of 1 mm, prove that adding sheet layers does not significantly affect the required thrust force in these processes. This is one of the unique features of the friction drill joining process;
- The load-displacement graph displays that the efficient clamping and fixing of sheets contributes to improving the joint strength and formed-bush quality;
- The microscopic results and energy-dispersive spectroscopy findings show how the top sheet softens, stirs, and forms into the bottom sheet, and how the joint is generated. Moreover, the SEM pictures confirm the effect of effective clamping on improving sheet stirring and joint strength.
- The SEM pictures demonstrate that without using effective clamping, vertical cracks (resulting from insufficient material stirring) are generated. Effective clamping can eliminate the cracks and improve the joining strength;
- The numerical results of stress distribution show the maximum thermal stress is at the fourth stage, where the top sheet is stirred into the bottom sheet and bushing is formed. Moreover, huge thermal stress at stage 5, where the joining process is almost completed, occurs;
- The numerical findings of frictional heat generation strongly support the thermal stress results, and show the severe temperature gradient, which is the key point of sheet separation issue, in stages 4 and 5;
- The nodal displacement vectors from the numerical results confirm the effect of the clamping of the top and bottom sheets on preventing flow-softened material back-extruding and sheet gaps;
- The developed finite element analysis gives accurate results for residual stress distribution in the friction drill joining process, and the outcomes show that maximum residual stress exists on the formed-hole edge;
- Finally, the comparative FE results clearly show the significant effect of efficient sheet clamping in the proposed technique for reducing and eliminating the sheet gap, and improving the joint strength.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EPA EPA and NHTSA Set Standards to Reduce Greenhouse Gases and Improve Fuel Economy for Model Years 2017–2025 Cars and Light Trucks. Regul. Announc. Off. Transp. Air Qual. 2012, 1–10. Available online: https://www.nhtsa.gov/staticfiles/rulemaking/pdf/cafe/CAFE_2017-25_Fact_Sheet.pdf (accessed on 25 April 2022).
- Lazarevic, S.; Miller, S.F.; Li, J.; Carlson, B.E. Experimental analysis of friction stir forming for dissimilar material joining application. J. Manuf. Process. 2013, 15, 616–624. [Google Scholar] [CrossRef]
- Freis, A.K. Method of flow drill screwing parts. U.S. Patent 8,857,040, 14 October 2014. [Google Scholar]
- Khan, H.A.; Li, J.; Shao, C. Analyses of friction stir riveting processes: A. review. J. Manuf. Sci. Eng. 2017, 139, 100216. [Google Scholar]
- Khan, H.A.; Wang, K.; Pei, S.; Li, J.; Miller, S. Fatigue damage evolution of micro friction stir blind riveting joint through acoustic emission analysis. Materialia 2019, 5, 100216. [Google Scholar] [CrossRef]
- Wang, W.; Wang, K.; Khan, H.A.; Li, J.; Miller, S. Numerical analysis of magnesium to aluminum joints in friction stir blind riveting. Procedia Cirp 2018, 76, 94–99. [Google Scholar] [CrossRef]
- Dehghan, S.; Soury, E.; Ismail, M.I.S.B. A comparative study on machining and tool performance in friction drilling of difficult-to-machine materials AISI304, Ti-6Al-4V, Inconel718. J. Manuf. Process. 2021, 61, 128–152. [Google Scholar] [CrossRef]
- Sun, X.; Khaleel, M.A. Dynamic strength evaluations for self-piercing rivets and resistance spot welds joining similar and dissimilar metals. Int. J. Impact Eng. 2007, 34, 1668–1682. [Google Scholar] [CrossRef]
- Lazarevic, S.; Ogata, K.A.; Miller, S.F.; Kruger, G.H.; Carlson, B.E. Formation and structure of work material in the friction stir forming process. J. Manuf. Sci. Eng. 2015, 137, 1–8. [Google Scholar] [CrossRef]
- Van Belle, L.; Brandolisio, D.; Deckers, E.; Jonckheere, S.; Claeys, C.; Plumyers, B.; Desmet, W. Experimental validation of numerical structural dynamic models for metal plate joining techniques. J. Vib. Control 2017, 24, 3348–3369. [Google Scholar] [CrossRef]
- Skovron, J.D.; Ruszkiewicz, B.; Mears, L.; Abke, T.; Raymond, A.; Varma, A.; Li, Y.; Choi, H.; Zhao, X. Investigation of the cleaning and welding steps from the friction element welding process. In Proceedings of the Manufacturing Science and Engineering Conference MSEC2017, Los Angeles, CA, USA, 4–8 June 2017. [Google Scholar]
- Tamjidy, M.; Baharudin, B.T.; Paslar, S.; Matori, K.A.; Sulaiman, S.; Fadaeifard, F. Multi-objective optimization of friction stir welding process parameters of AA6061-T6 and AA7075-T6 using a biogeography based optimization algorithm. Materials 2017, 10, 533. [Google Scholar] [CrossRef] [Green Version]
- Springer, H.; Kostka, A.; Dos Santos, J.F.; Raabe, D. Influence of intermetallic phases and Kirkendall-porosity on the mechanical properties of joints between steel and aluminium alloys. Mater. Sci. Eng. A 2011, 528, 4630–4642. [Google Scholar] [CrossRef]
- Cao, R.; Sun, J.H.; Chen, J.H.; Wang, P.-C. Cold metal transfer joining of aluminum AA6061-T6-to-galvanized boron steel. J. Manuf. Sci. Eng. 2014, 136, 051015–051025. [Google Scholar] [CrossRef]
- Rao, Z.; Liu, J.; Wang, P.-C.; Li, Y.; Liao, S. Modeling of cold metal transfer spot welding of AA6061-T6 aluminum alloy and galvanized mild steel. J. Manuf. Sci. Eng. 2014, 136, 051001–051012. [Google Scholar] [CrossRef]
- Ogata, K.A.; Lazarevic, S.; Miller, S.F. Dissimilar material joint strength and structure for friction stir forming process. In Proceedings of the International Manufacturing Science and Engineering Conference, Detroit, MI, USA, 9–13 June 2014; p. V002T02A076. [Google Scholar]
- Dehghan, S.; Ismail, M.I.S.B.; Souri, E. A thermo-mechanical finite element simulation model to analyze bushing formation and drilling tool for friction drilling of difficult-to-machine materials. J. Manuf. Process. 2020, 57, 1004–1018. [Google Scholar] [CrossRef]
- Dehghan, S. Experimental and Numerical Investigation on Friction Drilling of Difficult-to-Machine Materials. Ph.D. Thesis, University Putra Malaysia, Seri Kembangan, Malaysia, February 2019. [Google Scholar]
- Pereira, O.; Urbikaín, G.; Rodríguez, A.; Calleja, A.; Ayesta, I. Process performance and life cycle assessment of friction drilling on dual-phase steel. J. Clean. Prod. 2019, 213, 1147–1156. [Google Scholar] [CrossRef]
- Miller, S.F.; Shih, A.J. Friction drilling: A chipless hole making process. In Proceedings of the International Conference on Manufacturing Science & Engineering (ASME), Ypsilanti, MI, USA, 8–11 October 2006. [Google Scholar]
- Dehghan, S.; Ismail, M.I.S.B.; Ariffin, M.K.A.B.M.; Baharudin, B.T.H.T.B. Friction Drilling of Difficult-to-Machine Materials: Workpiece Microstructural Alterations and Tool Wear. Metals 2019, 9, 945. [Google Scholar] [CrossRef] [Green Version]
- Aslan, F.; Langlois, L.; Balan, T. Experimental analysis of the flow drill screw driving process. Int. J. Adv. Manuf. Technol. 2019, 104, 2377–2388. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, X.; Zhou, Q.; He, H.; Liu, J.; Xu, C.; Li, L. Modeling and simulation of the flow drill screw process of a DP590/Al6061-T6 multi-material joint used for vehicle body. Int. J. Adv. Manuf. Technol. 2020, 110, 1189–1201. [Google Scholar] [CrossRef]
- Urbikain, G.; Perez, J.M.; de Lacalle, L.N.L.; Andueza, A. Combination of friction drilling and form tapping processes on dissimilar materials for making nutless joints. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016, 232, 1007–1020. [Google Scholar] [CrossRef]
- Kumar, R.; Hynes, N.R.J. Thermal drilling processing on sheet metals: A Review. Int. J. Light. Mater. Manuf. 2019, 2, 193–205. [Google Scholar] [CrossRef]
- Skovron, J.; Mears, L.; Ulutan, D.; Detwiler, D.; Paolini, D.; Baeumler, B.; Claus, L. Characterization of flow drill screwdriving process parameters on joint quality. SAE Int. J. Mater. Manuf. 2015, 8, 35–44. [Google Scholar] [CrossRef]
- Aslan, F.; Langlois, L.; Mangin, P.; Balan, T. Identification of drilling parameters during the flow drill screw driving process. Key Eng. Mater. 2018, 767, 465–471. [Google Scholar] [CrossRef]
- Skovron, J.D.; Detwiler, D.; Paolini, D.; Baeumler, B. Effect of thermal assistance on the joint quality of Al6063-T5A during flow drill screwdriving. J. Manuf. Sci. Eng. 2015, 137, 1–8. [Google Scholar] [CrossRef]
- Dehghan, S.; Ismail, M.I.S.B.; Ariffin, M.K.A.B.M.; Baharudin, B.T.H.T.B. Measurement and analysis of thrust force and torque in friction drilling of difficult-to-machine materials. Int. J. Adv. Manuf. Technol. 2019, 24, 1–21. [Google Scholar] [CrossRef]
- Ku, W.L.; Hung, C.L.; Lee, S.M.; Chow, H.M. Optimization in thermal friction drilling for SUS 304 stainless steel. Int. J. Adv. Manuf. Technol. 2011, 53, 935–944. [Google Scholar] [CrossRef]
- Chow, H.M.; Lee, S.M.; Yang, L.D. Machining characteristic study of friction drilling on AISI 304 stainless steel. J. Mater. Process. Technol. 2008, 207, 180–186. [Google Scholar] [CrossRef]
- Dehghan, S.; Ismail, M.I.S.; Ariffin, M.K.A.; Baharudin, B.T.H.T.; Sulaiman, S. Numerical simulation on friction drilling of aluminum alloy. Materwiss. Werksttech. 2017, 48, 241–248. [Google Scholar] [CrossRef]
- Ku, W.L.; Chow, H.M.; Lin, Y.J.; Wang, D.A.; Yang, L.D. Optimization of Thermal Friction Drilling Using Grey Relational Analysis. Adv. Mater. Res. 2010, 154, 1726–1738. [Google Scholar] [CrossRef]
- Sonstabo, J.K.; Holmstrom, P.H.; Morin, D.; Langseth, M. Macroscopic strength and failure properties of flow-drill screw connections. J. Mater. Process. Technol. 2015, 222, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, B.; Abbasi, M.; Abdollahzadeh, A.; Omidvar, H. Advanced approach to modify friction stir spot welding process. Met. Mater. Int. 2020, 26, 1562–1573. [Google Scholar] [CrossRef]
- ISO 6507-1:2018(En). Metallic Materials—Vickers Hardness Test—Part 1: Test Method. Available online: https://www.iso.org/obp/ui/#iso:std:iso:6507:-1:ed-4:v1:en (accessed on 8 October 2021).
- Lazarevic, S.; Miller, S.; Kruger, G.; van Niekerk, T.; Carlson, B. Finite Element Analysis of the Friction Stir Forming Process. In Proceedings of the International Manufacturing Science and Engineering Conference, Xiamen, China, 20–22 October 2017; p. V001T02A006. [Google Scholar]
- Tayebi, P.; Fazli, A.; Asadi, P.; Soltanpour, M. Formability analysis of dissimilar friction stir welded AA 6061 and AA 5083 blanks by SPIF process. CIRP J. Manuf. Sci. Technol. 2019, 25, 50–68. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, M.; Zhang, H.; Zhang, X.; Yu, T.; Wu, Z. A finite element model to simulate defect formation during friction stir welding. Metals 2017, 7, 256. [Google Scholar] [CrossRef]
- ABAQUS. “ABAQUS 6.14 Documentation,” Dassault Systemes Simulia Corporation. 2012. Available online: www.3ds.com (accessed on 1 October 2014).
- Johnson, G.R. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In Proceedings of the 7th International Symposium on Ballistics, Hague, The Netherlands, 19–21 April 1983. [Google Scholar]
- Krasauskas, P.; Kilikevičius, S.; Česnavičius, R.; Pačenga, D. Experimental analysis and numerical simulation of the stainless AISI 304 steel friction drilling process. Mechanika 2014, 20, 590–595. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.F.; Shih, A.J. Thermo-mechanical finite element modeling of the friction drilling process. J. Manuf. Sci. Eng. 2007, 129, 531–538. [Google Scholar] [CrossRef]
Materials | Al | Cr | Mg | Ni | P | S | Si | Fe | Cu | Mn |
---|---|---|---|---|---|---|---|---|---|---|
Al6061 | 97.9 | 0.2 | 1.0 | - | - | - | 0.6 | - | 0.28 | - |
AISI304 | - | 18~20 | - | 8~10 | - | - | 1 | 66~72 | - | 2 |
AISI304 | ||||||
---|---|---|---|---|---|---|
Temperature | Thermal Conductivity | Mass Density | Young’s Modulus | Poisson’s Ratio | Expansion Coefficient | Specific Heat |
37 | 146 | 7900 | 0.294 | 462 | ||
100 | 151 | 7880 | 0.295 | 496 | ||
200 | 161 | 7830 | 0.301 | 512 | ||
300 | 179 | 7790 | 0.31 | 525 | ||
400 | 180 | 7750 | 0.318 | 540 | ||
600 | 208 | 7660 | 0.326 | 577 | ||
800 | 239 | 7560 | 0.333 | 604 | ||
1200 | 322 | 7370 | 0.339 | 676 | ||
1300 | 337 | 7320 | 0.342 | 692 | ||
1500 | 344 | 7320 | 0.388 | 700 |
AL6061 | ||||||
---|---|---|---|---|---|---|
Temperature | Thermal conductivity | Mass Density | Young’s Modulus | Poisson’s Ratio | Expansion Coefficient | Specific Heat |
25 | 167 | 2685 | 0.33 | 945 | ||
100 | 177 | 2685 | 0.334 | 978 | ||
149 | 184 | 2667 | 0.335 | 1000 | ||
204 | 192 | 2657 | 0.336 | 1030 | ||
260 | 201 | 2657 | 0.338 | 1052 | ||
316 | 207 | 2630 | 0.36 | 1080 | ||
371 | 217 | 2630 | 0.4 | 1100 | ||
427 | 223 | 2602 | 0.41 | 1130 | ||
482 | 0.42 | 1276 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehghan, S.; Abbasi, R.; Baharudin, B.T.H.T.b.; Mousavi, M.L.; Soury, E. A Novel Approach to Friction Drilling Process: Experimental and Numerical Study on Friction Drill Joining of Dissimilar Materials AISI304/AL6061. Metals 2022, 12, 920. https://doi.org/10.3390/met12060920
Dehghan S, Abbasi R, Baharudin BTHTb, Mousavi ML, Soury E. A Novel Approach to Friction Drilling Process: Experimental and Numerical Study on Friction Drill Joining of Dissimilar Materials AISI304/AL6061. Metals. 2022; 12(6):920. https://doi.org/10.3390/met12060920
Chicago/Turabian StyleDehghan, Shayan, Rasol Abbasi, B. T. Hang. Tuah b. Baharudin, Mohsen Loh Mousavi, and Ehsan Soury. 2022. "A Novel Approach to Friction Drilling Process: Experimental and Numerical Study on Friction Drill Joining of Dissimilar Materials AISI304/AL6061" Metals 12, no. 6: 920. https://doi.org/10.3390/met12060920
APA StyleDehghan, S., Abbasi, R., Baharudin, B. T. H. T. b., Mousavi, M. L., & Soury, E. (2022). A Novel Approach to Friction Drilling Process: Experimental and Numerical Study on Friction Drill Joining of Dissimilar Materials AISI304/AL6061. Metals, 12(6), 920. https://doi.org/10.3390/met12060920