Influence of Partial Rust Layer on the Passivation and Chloride-Induced Corrosion of Q235b Steel in the Carbonated Simulated Concrete Pore Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Preparation of the Partial Pre-Rusted WBE and the Corrosion Coupons
2.2. The Experimental System
3. Results
3.1. The Chloride-Induced Corrosion Behavior of the Corrosion Coupons
3.2. The Passivation Behavior of WBE in Carbonated SCPS
3.3. The Chloride-Induced Corrosion Behavior of WBE in the Carbonated SCPS
4. Discussion
5. Conclusions
- (1)
- The pre-rusted rebar could keep a passive state in carbonated SCPS without Cl−. Meanwhile, the passive film formed on the pre-rusted region is thinner and more inhomogeneous than that on the fine polished region. Moreover, the rust layer will accelerate the dissolution of the passive film and make it more fragile.
- (2)
- The rust layer can hinder the local acidification process by retarding the diffusion of Cl− into the pit and slowing down the increase in pit area, thus inhibiting the initiation of pitting corrosion. Although the quality of the passive film formed on the pre-rusted region is lower than that of the fine polished region, the pitting corrosion still prefers to occur on the fine polished steel surface. The rust layer could play a more important role than the passive film in inhibiting the initiation of chloride-induced corrosion on rebar.
- (3)
- When the pitting corrosion continues to grow, the diffusion of the hydrogen ions from the stable pits to its vicinity would be retarded by the original rust layer. The pit would prefer to spread to the adjacent fine polished region. However, the growth process of pitting corrosion on rebar is greatly accelerated due to the catalytic cathodic reaction of the rust layer.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qu, F.; Li, W.; Dong, W.; Tam, V.W.Y.; Yu, T. Durability deterioration of concrete under marine environment from material to structure: A critical review. J. Build. Eng. 2021, 35, 102074. [Google Scholar] [CrossRef]
- Angst, U.M.; Geiker, M.R.; Alonso, M.C.; Polder, R.; Isgor, O.B.; Elsener, B.; Wong, H.; Michel, A.; Hornbostel, K.; Gehlen, C.; et al. The effect of the steel–concrete interface on chloride-induced corrosion initiation in concrete: A critical review by RILEM TC 262-SCI. Mater. Struct. 2019, 52, 88. [Google Scholar] [CrossRef]
- Xia, D.; Qin, Z.; Song, S.; Macdonald, D.D.; Luo, J.L. Combating marine corrosion on engineered oxide surface by repelling, blocking and capturing Cl−: A mini review. Corros. Commun. 2021, 2, 1–7. [Google Scholar] [CrossRef]
- Pan, C.C.; Zhang, X.; Yang, F.; Xia, D.H.; He, C.N.; Hu, W.B. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater. Acta Metall. Sin. 2022, 58, 599–609. [Google Scholar]
- Zhao, H.; Lie, S.; Zhang, Y. Fatigue assessment of cracked pipes with weld misalignment by using stress intensity factors. Int. J. Fatigue 2018, 116, 192–209. [Google Scholar] [CrossRef]
- Jon, W.; Isgor, O.B. The effect of simulated concrete pore solution composition and chlorides on the electronic properties of passive films on carbon steel rebar. Corros. Sci. 2016, 106, 82–95. [Google Scholar] [CrossRef]
- Ghods, P.; Isgor, O.B.; Brown, J.R.; Bensebaa, F.; Kingston, D. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties. Appl Surf. Sci. 2011, 257, 4669–4677. [Google Scholar] [CrossRef]
- Ghods, P.; Burkan Isgor, O.; Bensebaa, F.; Kingston, D. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution. Corros. Sci. 2012, 58, 159–167. [Google Scholar] [CrossRef]
- Song, Y.; Wightman, E.; Tian, Y.; Jack, K.; Li, X.; Zhong, H.Y.; Bond, P.L.; Yuan, Z.G.; Jiang, G.M. Corrosion of reinforcing steel in concrete sewers. Sci. Total Environ. 2019, 649, 739–748. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.G.; Lu, X.Y.; Zuo, Y.; Zhuang, N.; Chen, D. Electrochemical study the corrosion behaviour of carbon steel in mortars under compressive and tensile stresses. Corros. Sci. 2016, 103, 66–74. [Google Scholar] [CrossRef]
- AL-Ameeri, A.S.; Rafiq, M.I.; Tsioulou, O. Combined impact of carbonation and crack width on the Chloride Penetration and Corrosion Resistance of Concrete Structures. Cem. Concr. Compos. 2021, 115, 103819. [Google Scholar] [CrossRef]
- Zhao, H.; Lie, S.; Zhang, Y. Strain-based J-estimation scheme for fracture assessment of misaligned clad pipelines with an interface crack. Mar. Struct. 2018, 61, 238–255. [Google Scholar] [CrossRef]
- Tian, K.; Li, Z.; Zhang, J.; Huang, L.; Wang, B. Transfer learning based variable-fidelity surrogate model for shell buckling prediction. Compos. Struct. 2021, 273, 114285. [Google Scholar] [CrossRef]
- Peng, Z.; Zhao, H.; Li, X. New ductile fracture model for fracture prediction ranging from negative to high stress triaxiality. Int. J. Plast. 2021, 145, 103057. [Google Scholar] [CrossRef]
- Wang, X.P.; Shao, M.H.; Ye, C.Q.; Dong, S.G.; Du, R.G.; Lin, C.J. Study on effect of chloride ions on corrosion behavior of reinforcing steel in simulated polluted concrete pore solutions by scanning micro-reference electrode technique. J. Electroanal. Chem. 2021, 895, 115454. [Google Scholar] [CrossRef]
- Stefanoni, M.; Angst, U.; Elsener, B. Corrosion rate of carbon steel in carbonated concrete–A critical review. Cement Concr. Res. 2018, 103, 35–48. [Google Scholar] [CrossRef]
- Liu, X.; MacDonald, D.D.; Wang, M.; Xu, Y. Effect of dissolved oxygen, temperature, and pH on polarization behavior of carbon steel in simulated concrete pore solution. Electrochim. Acta 2021, 366, 137437. [Google Scholar] [CrossRef]
- Feng, X.G.; Tang, Y.M.; Zuo, Y. Influence of stress on passive behaviour of steel bars in concrete pore solution. Corros. Sci. 2011, 53, 1304–1311. [Google Scholar] [CrossRef]
- Shi, J.J.; Li, M.; Wu, M.; Ming, J. Role of red mud in natural passivation and chloride-induced depassivation of reinforcing steels in alkaline concrete pore solutions. Corros. Sci. 2021, 190, 109669. [Google Scholar] [CrossRef]
- Shi, J.J.; Ming, J.; Wang, D.Q.; Wu, M. Improved corrosion resistance of a new 6% Cr steel in simulated concrete pore solution contaminated by chlorides. Corros. Sci. 2020, 174, 108851. [Google Scholar] [CrossRef]
- Doi, K.; Hiromoto, S.; Shinohara, T.; Tsuchiya, K.; Katayama, H.; Akiyama, E. Role of mill scale on corrosion behavior of steel rebars in mortar. Corros. Sci. 2020, 177, 108995. [Google Scholar] [CrossRef]
- Alhozaimy, A.; Hussain, R.R.; Al-Negheimish, A. Electro-chemical investigation for the effect of rebar source and surface condition on the corrosion rate of reinforced concrete structures under varying corrosive environments. Constr. Build. Mater. 2020, 244, 118317. [Google Scholar] [CrossRef]
- Mahallati, E.; Saremi, M. An assessment on the mill scale effects on the electrochemical characteristics of steel bars in concrete under DC-polarization. Cement Concr. Res. 2006, 36, 1324–1329. [Google Scholar] [CrossRef]
- Stefanoni, M.; Angst, U.; Elsener, B. Local electrochemistry of reinforcement steel—Distribution of open circuit and pitting potentials on steels with different surface condition. Corros. Sci. 2015, 98, 610–618. [Google Scholar] [CrossRef]
- Xu, F.L.; Chuang, D.D.L. Improving the bond strength between steel rebar and concrete by oxidation treatments of the rebar. Cement Concr. Res. 1996, 26, 1499–1503. [Google Scholar] [CrossRef]
- Batis, G.; Rakanta, E. Corrosion of steel reinforcement due to atmospheric pollution. Cem. Concr. Compos. 2005, 27, 269–275. [Google Scholar] [CrossRef]
- Al-Tayyib, A.J.; Khan, M.S.; Allam, I.M.; Al-Mana, A.I. Corrosion behavior of pre-rusted rebars after placement in concrete. Cem. Concr. Res. 1990, 20, 955–960. [Google Scholar] [CrossRef]
- González, J.A.; Miranda, J.M.; Otero, E.; Feliu, B. Effect of electrochemically reactive rust layers on the corrosion of steel in a Ca(OH)2 solution. Corros. Sci. 2007, 49, 436–448. [Google Scholar] [CrossRef]
- Li, L.; Sagüés, A.A. Chloride Corrosion Threshold of Reinforcing Steel in Alkaline Solutions—Open-Circuit Immersion Tests. Corros.-US 2001, 57, 19–28. [Google Scholar] [CrossRef]
- Chalhoub, C.; François, R.; Carcasses, M. Critical chloride threshold values as a function of cement type and steel surface condition. Cem. Concr. Res. 2020, 134, 106086. [Google Scholar] [CrossRef]
- Li, K.; Xu, Y.; Wang, X.; Wang, K.C.; Song, S.Y.; Jin, W.L.; Huang, Y. Experimental study on passivation and corrosion performances of pre-rusted steel in simulated concrete pore solution. Corros. Eng. Sci. Technol. 2021, 57, 232–242. [Google Scholar] [CrossRef]
- Maslehuddin, M.; Al-Zahrani, M.M.; Al-Dulaijan, S.U.; Abdulquddus; Rehman, S.; Ahsan, S.N. Effect of steel manufacturing process and atmospheric corrosion on the corrosion-resistance of steel bars in concrete. Cem. Concr. Compos. 2002, 24, 151–158. [Google Scholar] [CrossRef]
- Tan, Y. Experimental methods designed for measuring corrosion in highly resistive and inhomogeneous media. Corros. Sci. 2011, 53, 1145–1155. [Google Scholar] [CrossRef]
- Shi, W.; Dong, Z.H.; Kong, D.J.; Guo, X.P. Application of wire beam electrode technique to investigate initiation and propagation of rebar corrosion. Cement Concr. Res. 2013, 48, 25–33. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, W.; Li, S.; Chowwanonthapunya, T.; Wongpat, B.; Zhao, Y.G.; Dong, B.J.; Zhang, T.Y.; Li, X.G. Evolution of rust layers on carbon steel and weathering steel in high humidity and heat marine atmospheric corrosion. J. Mater. Sci. Technol. 2020, 39, 190–199. [Google Scholar] [CrossRef]
- Fan, Y.M.; Liu, W.; Sun, Z.T.; Chowwanonthapunya, T.; Zhao, Y.G.; Dong, B.J.; Zhang, T.Y.; Banthukul, W. Effect of chloride ion on corrosion resistance of Ni-advanced weathering steel in simulated tropical marine atmosphere. Constr. Build. Mater. 2021, 266, 120937. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Q.; Gao, S.; Wang, X.; Huang, Y. Exploring the effects of sand impacts and anodic dissolution on localized erosion-corrosion in sand entraining electrolyte. Wear 2021, 478–479, 203907. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Q.; Zhou, Q.; Gao, S.; Wang, B.; Wang, X.; Huang, Y. Flow accelerated corrosion and erosion−corrosion behavior of marine carbon steel in natural seawater. NPJ Mater. Degrad. 2021, 5, 56. [Google Scholar] [CrossRef]
- Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta 2010, 55, 6218–6227. [Google Scholar] [CrossRef]
- Peng, S.; Xu, J.; Li, Z.; Jiang, S.; Xie, Z.; Munroe, P. Electrochemical noise analysis of cavitation erosion corrosion resistance of NbC nanocrystalline coating in a 3.5 wt% NaCl solution. Surf. Coat. Technol. 2021, 415, 127133. [Google Scholar] [CrossRef]
- Frankel, G.S.; Li, T.S.; Scully, J.R. Localized Corrosion: Passive Film Breakdown vs Pit Growth Stability. J. Electrochem. Soc. 2017, 164, 180–181. [Google Scholar] [CrossRef]
- Marcus, P.; Maurice, V.; Strehblow, H.H. Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure. Corros. Sci. 2008, 50, 2698–2704. [Google Scholar] [CrossRef]
- Natishan, P.M.; O’Grady, W.E. Chloride Ion Interactions with Oxide-Covered Aluminum Leading to Pitting Corrosion: A Review. J. Electrochem. Soc. 2014, 161, C421–C432. [Google Scholar] [CrossRef]
- Ai, Z.Y.; Jiang, J.Y.; Sun, W.; Jiang, X.L.; Yu, B.; Wang, K.; Zhang, Z.F.; Song, D.; Ma, H.; Zhang, J.C. Enhanced passivation of alloy corrosion-resistant steel Cr10Mo1 under carbonation—Passive film formation, the kinetics and mechanism analysis. Cem. Concr. Compos. 2018, 92, 178–187. [Google Scholar] [CrossRef]
- Singh, J.K.; Singh, D.D.N. The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH. Corros. Sci. 2012, 56, 129–142. [Google Scholar] [CrossRef]
- Zhao, T.; Liu, K.; Li, Q. Comparison of the rusting behaviors of S450EW weathering steel under continuous spray and wet/dry cycling. Constr. Build. Mater. 2021, 309, 125211. [Google Scholar] [CrossRef]
- Martinez-Echevarria, M.J.; Lopez-Alonso, M.; Cantero, R.D.; Montero, J.R. Influence of the previous state of corrosion of rebars in predicting the service life of reinforced concrete structures. Constr. Build. Mater. 2018, 188, 915–923. [Google Scholar] [CrossRef]
- Galvele, J.R. Transport processes and the mechanism of pitting of metals. J. Electrochem. Soc. 1976, 123, 464–474. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.H.; Shi, W.; Guo, X.P. Initiation and repassivation of pitting corrosion of carbon steel in carbonated concrete pore solution. Corros. Sci. 2011, 53, 1322–1330. [Google Scholar] [CrossRef]
(Ω·cm2) | (kΩ·cm2) | -Y0 (×10−5Ω−1·cm−2·sn) | -n | -Ceff (μF·cm−2) | (kΩ·cm2) | -Y0 (×10−5Ω−1·cm−2·sn) | -n | χ2 (×10−4) | |
---|---|---|---|---|---|---|---|---|---|
W2, 5(FP) | 55.02 | 2227 | 3.589 | 0.955 | 44.12 | 7.84 | |||
W4, 5(FP) | 57.01 | 2082 | 3.611 | 0.949 | 45.55 | 5.55 | |||
W6, 6(FP) | 52.88 | 2724 | 3.231 | 0.951 | 40.69 | 8.03 | |||
W5, 1(PR) | 42.57 | 38.06 | 19.51 | 0.849 | 185.0 | 257.9 | 2.600 | 0.551 | 2.02 |
W7, 4(PR) | 45.42 | 142.9 | 10.15 | 0.889 | 79.76 | 684.2 | 2.122 | 0.734 | 2.42 |
W7, 8(PR) | 59.41 | 89.57 | 8.713 | 0.889 | 112.6 | 717.8 | 1.586 | 0.660 | 1.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Li, X.; Zhao, Y.; Wang, K.; Song, S.; Jin, W.; Xia, D.; Xu, Y.; Huang, Y. Influence of Partial Rust Layer on the Passivation and Chloride-Induced Corrosion of Q235b Steel in the Carbonated Simulated Concrete Pore Solution. Metals 2022, 12, 1064. https://doi.org/10.3390/met12071064
Li K, Li X, Zhao Y, Wang K, Song S, Jin W, Xia D, Xu Y, Huang Y. Influence of Partial Rust Layer on the Passivation and Chloride-Induced Corrosion of Q235b Steel in the Carbonated Simulated Concrete Pore Solution. Metals. 2022; 12(7):1064. https://doi.org/10.3390/met12071064
Chicago/Turabian StyleLi, Kaiqiang, Xincheng Li, Yubin Zhao, Kangchen Wang, Shenyou Song, Wenliang Jin, Dahai Xia, Yunze Xu, and Yi Huang. 2022. "Influence of Partial Rust Layer on the Passivation and Chloride-Induced Corrosion of Q235b Steel in the Carbonated Simulated Concrete Pore Solution" Metals 12, no. 7: 1064. https://doi.org/10.3390/met12071064
APA StyleLi, K., Li, X., Zhao, Y., Wang, K., Song, S., Jin, W., Xia, D., Xu, Y., & Huang, Y. (2022). Influence of Partial Rust Layer on the Passivation and Chloride-Induced Corrosion of Q235b Steel in the Carbonated Simulated Concrete Pore Solution. Metals, 12(7), 1064. https://doi.org/10.3390/met12071064