Mathematical Modeling of Heating and Strain Aging of Steel during High-Speed Wire Drawing
Abstract
:1. Introduction
2. Modeling the Temperature of Wire Drawing on Straight-Line Drawing Machines
3. Conditions for the Development of Dynamic and Static Strain Aging
4. Conclusions
- A mathematical model has been developed for calculating the wire average temperature during drawing on straight-line drawing machines;
- The calculation results showed that the average temperature of the wire during drawing at a speed of up to 45 m/s on straight-line drawing machines can reach 400 °C;
- Deformation heating of the wire during drawing does not exceed 60 °C, and heating due to sliding friction can reach 300 °C;
- Average strain rates on modern high-speed drawing machines reach 7000 s−1;
- In modern temperature and speed regimes of the drawing process, conditions are created for the occurrence of dynamic deformation aging of steel in the presence of hydrogen atoms;
- During heat treatment and pickling, it is necessary to exclude the hydrogenation of steel;
- To exclude static deformation aging of steel during drawing, it is necessary to prevent heating of the wire above 180–200 °C.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wright, R.N. Wire Technology, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2016; 311p. [Google Scholar] [CrossRef]
- Hwang, J.-K. Hardening and Softening Behavior of Caliber-Rolled Wire. Materials 2022, 15, 2939. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-K.; Kim, S.-J.; Kim, K.-J. Influence of Roll Diameter on Material Deformation and Properties during Wire Flat Rolling. Appl. Sci. 2021, 11, 8381. [Google Scholar] [CrossRef]
- Faizov, S.; Sarafanov, A.; Erdakov, I.; Gromov, D.; Svistun, A.; Glebov, L.; Bykov, V.; Bryk, A.; Radionova, L. On the Direct Extrusion of Solder Wire from 52In-48Sn Alloy. Machines 2021, 9, 93. [Google Scholar] [CrossRef]
- Stolyarov, A.; Polyakova, M.; Atangulova, G.; Alexandrov, S. Effect of Die Angle and Frictional Conditions on Fine Grain Layer Generation in Multipass Drawing of High Carbon Steel Wire. Metals 2020, 10, 1462. [Google Scholar] [CrossRef]
- Rodríguez-Alabanda, Ó.; Romero, P.E.; Molero, E.; Guerrero-Vaca, G. Analysis, Validation and Optimization of the Multi-Stage Sequential Wiredrawing Process of EN AW-1370 Aluminium. Metals 2019, 9, 1021. [Google Scholar] [CrossRef]
- Haddi, A.; Imad, A.; Vega, G. Analysis of temperature and speed effects on the drawing stress for improving the wire drawing process. Mater. Design 2011, 32, 4310–4315. [Google Scholar] [CrossRef]
- Oliveira Anício Costa, I.M.; Batková, M.; Batko, I.; Benabou, A.; Mesplont, C.; Vogt, J.-B. The Influence of Microstructure on the Electromagnetic Behavior of Carbon Steel Wires. Crystals 2022, 12, 576. [Google Scholar] [CrossRef]
- Santana Martinez, G.A.; Qian, W.-L.; Kabayama, L.K.; Prisco, U. Effect of Process Parameters in Copper-Wire Drawing. Metals 2020, 10, 105. [Google Scholar] [CrossRef]
- Radionova, L.V.; Shirokov, V.V.; Faizov, S.R.; Zhludov, M.A. Studies of Influence of Process Parameters on the Strain Rate at High-Speed Wire Drawing. MSF 2019, 946, 832–838. [Google Scholar] [CrossRef]
- Suliga, M.; Wartacz, R.; Michalczyk, J. The influence of the angle of the working part of the die on the high speed drawing processof low carbon steel wires. Metall. Mater. Trans. A 2017, 62, 483–487. [Google Scholar] [CrossRef]
- Martínez, G.A.S.; Rodriguez-Alabanda, O.; Prisco, U.; Tintelecan, M.; Kabayama, L.K. The influences of the variable speed and internal die geometry on the performance of two commercial soluble oils in the drawing process of pure copper fine wire. Int. J. Adv. Manuf. Technol. 2022, 118, 3749–3760. [Google Scholar] [CrossRef]
- Tzou, G.-Y.; Chai, U.-C.; Hsu, C.-M.; Hsu, H.-Y. FEM simulation analysis of wire rod drawing process using the rotating die under Coulomb friction. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2017; Volume 123, p. 00033. [Google Scholar] [CrossRef]
- Radionova, L.V.; Kharitonov, V.A.; Zyuzin, V.I.; Rol’shchikov, L.D. New technological lubricants for steel wire drawing. Steel Trans. 2001, 12, 49–50. [Google Scholar]
- Hwang, J.-K.; Yi, I.-C.; Son, I.-H.; Yoo, J.-Y.; Kim, B.; Zargaran, A.; Kim, N.J. Microstructural evolution and deformation behavior of twinning-induced plasticity (TWIP) steel during wire drawing. Mater. Sci. Eng. A 2015, 644, 41–52. [Google Scholar] [CrossRef]
- Radionova, L.V.; Lisovskiy, R.A.; Svistun, A.S.; Erdakov, I.N. Change in Mechanical Properties During Drawing of Wire from Ni 99.6. In Materials Science Forum; Trans Tech Publications, Ltd.: Wollerau, Switzerland, 2022. [Google Scholar] [CrossRef]
- Massé, T.; Fourment, L.; Montmitonnet, P.; Bobadilla, C.; Foissey, S. The optimal die semi-angle concept in wire drawing, examined using automatic optimization techniques. Int. J. Mater. Form. 2013, 6, 377–389. [Google Scholar] [CrossRef]
- Majzoobi, G.H.; Saniee, F.F.; Aghili, A. An investigation into the effect of redundant shear deformation in bar drawing. J. Mater. Processing Technol. 2008, 201, 133–137. [Google Scholar] [CrossRef]
- Radionova, L.V.; Lisovsky, R.A.; Lezin, V.D. Theory of Energy Conservation as the Basis for the Design of Wire Drawing. In Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). ICIE 2021. Lecture Notes in Mechanical Engineering; Radionov, A.A., Gasiyarov, V.R., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, S.; Aggarwal, V.; Singh, S.; Pimenov, D.Y.; Giasin, K.; Nadolny, K. Hand and Abrasive Flow Polished Tungsten Carbide Die: Optimization of Surface Roughness, Polishing Time and Comparative Analysis in Wire Drawing. Materials 2022, 15, 1287. [Google Scholar] [CrossRef]
- Milenin, A.; Wróbel, M.; Kustra, P.; Němeček, J. Experimental and Numerical Study of Surface Roughness of Thin Brass Wire Processed by Different Dieless Drawing Processes. Materials 2022, 15, 35. [Google Scholar] [CrossRef]
- Liu, S.; Shan, X.; Cao, H.; Xie, T. Finite Element Analysis on Ultrasonic Drawing Process of Fine Titanium Wire. Metals 2020, 10, 575. [Google Scholar] [CrossRef]
- Reshmin, Y.A.; Frolov, V.I.; Stolyarov, A.Y.; Zhilkina, V.F. Use of an Emulsion Based on the Lubricant Sinapol in Draw Benches to Make Galvanized Wire. Metallurgist 2004, 48, 45–47. [Google Scholar] [CrossRef]
- Sas-Boca, I.M.; Tintelecan, M.; Pop, M.; Iluţiu-Varvara, D.-A.; Mihu, A.M. The Wire Drawing Process Simulation and the Optimization of Geometry Dies. Procedia Eng. 2017, 181, 187–192. [Google Scholar] [CrossRef]
- Taheri, A.K.; Maccagno, T.M.; Jonas, J.J. Dynamic Strain Aging and the Wire Drawing of Low Carbon Steel Rods. ISIJ Int. 1995, 35, 1532–1540. [Google Scholar] [CrossRef]
- Olowu, T.O.; Ariyo, F.K.; Onibonoje, M.O. Performance Analysis of Direct Torque Controlled, Inverter-fed PMSM Drive for Wire Drawing Machines. Int. J. Eng. Trends Technol. (IJETT) 2018, 55, 1–8. [Google Scholar] [CrossRef]
- Kharitonov, V.A.; Usanov, M.Y. Choice of a method of carbon wire drawing. Ferr. Metall. Bull. Sci. Tech. Econ. Inf. 2021, 77, 1177–1185. (In Russian). [Google Scholar] [CrossRef]
- Available online: https://www.mflgroup.com/EN/industry/kgt-series (accessed on 27 July 2022).
- Hwang, J.-K. Fracture behavior of twinning-induced plasticity steel during wire drawing. J. Mater. Res. Technol. 2020, 9, 4527–4537. [Google Scholar] [CrossRef]
- Yamaguchi, I.; Yonemura, M. Recovery and Recrystallization Behaviors of Ni–30 Mass Pct Fe Alloy During Uniaxial Cold and Hot Compression. Metall. Mater. Trans. A 2021, 52, 3517–3529. [Google Scholar] [CrossRef]
- Shakhova, I.; Belyakov, A.; Yanushkevich, Z.; Tsuzaki, K.; Kaibyshev, R. On Strengthening of Austenitic Stainless Steel by Large Strain Cold Working. ISIJ Int. 2016, 56, 1289–1296. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Wang, R.H. Manipulating nanostructure to simultaneously improve the electrical conductivity and strength in microalloyed Al-Zr conductors. Sci. Rep. 2018, 8, 6202. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Garcia-Gonzalez, D.; Rusinek, A. Constitutive Models for Dynamic Strain Aging in Metals: Strain Rate and Temperature Dependences on the Flow Stress. Materials 2020, 13, 1794. [Google Scholar] [CrossRef]
- Fetisov, V.Р. Evaluation of plasticity during deformation of carbon steel. Litiyo Metall. (Foundry Prod. Metall.) 2019, 3, 85–88. (In Russian). [Google Scholar] [CrossRef]
- Saborío-González, M.; Rojas-Hernández, I. Revisión: Fragilización por hidrógeno de metales y aleaciones en motores de combustión. Rev. Tecnol. Marcha 2018, 31, 3–13. [Google Scholar] [CrossRef]
- Vega, G.; Haddi, A.; Imad, A. Temperature effects on wire-drawing process: Experimental investigation. Int. J. Mater. Form. 2009, 2, 229. [Google Scholar] [CrossRef]
- Alexandrov, S.; Hwang, Y.-M.; Tsui, H.S.R. Determining the Drawing Force in a Wire Drawing Process Considering an Arbitrary Hardening Law. Processes 2022, 10, 1336. [Google Scholar] [CrossRef]
- Radionova, L.V.; Lisovskiy, R.A.; Svistun, A.S.; Gromov, D.V.; Erdakov, I.N. FEM Simulation Analysis of Wire Drawing Process at Different Angles Dies on Straight-Line Drawing Machines. In Proceedings of the 8th International Conference on Industrial Engineering. ICIE 2022. Lecture Notes in Mechanical Engineering; Radionov, A.A., Gasiyarov, V.R., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Mehrer, H.; Eggersmann, M.; Gude, A.; Salamon, M.; Sepiol, B. Diffusion in intermetallic phases of the Fe–Al and Fe–Si systems. Mater. Sci. Eng. A 1997, 239–240, 889–898. [Google Scholar] [CrossRef]
- Heumann, T. Diffusion in Metallen: Grundlagen, Theorie, Vorgänge in Reinmetallen und Legierungen; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar] [CrossRef]
- Odnobokova, M.; Belyakov, A.; Kaibyshev, R. Development of Nanocrystal-line 304L Stainless Steel by Large Strain Cold Working. Metals 2015, 5, 656–668. [Google Scholar] [CrossRef]
- Ghosh, C.; Shome, M. Dynamic strain aging during wire drawing and its effect on electrochemical behavior. Ironmak. Steelmak. 2017, 44, 789–795. [Google Scholar] [CrossRef]
Pass Number | Drawing Route , mm | ||||||
---|---|---|---|---|---|---|---|
0.05 | 0.15 | ||||||
10 | 20 | 45 | 10 | 20 | 45 | ||
Billet | 3.50 | - | - | - | - | - | - |
1 | 3.00 | 66 | 63 | 61 | 81 | 74 | 69 |
2 | 2.60 | 117 | 117 | 117 | 142 | 136 | 132 |
3 | 2.25 | 156 | 164 | 170 | 185 | 187 | 189 |
4 | 1.95 | 184 | 200 | 215 | 216 | 227 | 237 |
5 | 1.70 | 211 | 235 | 259 | 244 | 264 | 284 |
6 | 1.50 | 230 | 262 | 296 | 265 | 293 | 323 |
7 | 1.30 | 270 | 310 | 353 | 305 | 340 | 381 |
Drawing Route | 3.00 | 2.60 | 2.25 | 1.95 | 1.70 | 1.50 | 1.30 |
, °С | 256 | 286 | 305 | 329 | 359 | 397 | 402 |
, mm | 0.82 | 0.66 | 0.53 | 0.43 | 0.36 | 0.28 | 0.23 |
Impurity Atom | The Pre-Exponential Factor | Activation Energy , eV |
---|---|---|
C | 3.96 × 10−7 | 0.83 |
N | 3.00 × 10−7 | 0.80 |
H | 4.20 × 10−8 | 0.04 |
O | 3.78 × 10−7 | 0.96 |
Steel Temperature during Drawing, °С | 100 | 140 | 180 | 220 | 260 | 300 |
Start Time, s | 7000 | 3200 | 200 | 1.5 | 0.2 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radionova, L.V.; Gromov, D.V.; Svistun, A.S.; Lisovskiy, R.A.; Faizov, S.R.; Glebov, L.A.; Zaramenskikh, S.E.; Bykov, V.A.; Erdakov, I.N. Mathematical Modeling of Heating and Strain Aging of Steel during High-Speed Wire Drawing. Metals 2022, 12, 1472. https://doi.org/10.3390/met12091472
Radionova LV, Gromov DV, Svistun AS, Lisovskiy RA, Faizov SR, Glebov LA, Zaramenskikh SE, Bykov VA, Erdakov IN. Mathematical Modeling of Heating and Strain Aging of Steel during High-Speed Wire Drawing. Metals. 2022; 12(9):1472. https://doi.org/10.3390/met12091472
Chicago/Turabian StyleRadionova, Liudmila V., Dmitry V. Gromov, Alexandra S. Svistun, Roman A. Lisovskiy, Sergei R. Faizov, Lev A. Glebov, Sergei E. Zaramenskikh, Vitaly A. Bykov, and Ivan N. Erdakov. 2022. "Mathematical Modeling of Heating and Strain Aging of Steel during High-Speed Wire Drawing" Metals 12, no. 9: 1472. https://doi.org/10.3390/met12091472
APA StyleRadionova, L. V., Gromov, D. V., Svistun, A. S., Lisovskiy, R. A., Faizov, S. R., Glebov, L. A., Zaramenskikh, S. E., Bykov, V. A., & Erdakov, I. N. (2022). Mathematical Modeling of Heating and Strain Aging of Steel during High-Speed Wire Drawing. Metals, 12(9), 1472. https://doi.org/10.3390/met12091472