WC-Based Cemented Carbides with High Entropy Alloyed Binders: A Review
Abstract
:1. Introduction
2. Refinement of WC Grains by Use of HEA Binders
3. Corrosion Resistance and Oxidation Behavior
4. Hardness and Fracture Toughness
5. Phase Transitions in the Binder
6. Faceting–Roughening of WC/Binder Interfaces
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardarelli, F. Materials Handbook: A Concise Desktop Reference; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Haynes, W.M. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Swab, J.J.; Wright, J.C. Application of ASTM C1421 to WC-Co fracture toughness measurement. Int. J. Refract. Met. Hard Mater. 2016, 58, 8–13. [Google Scholar] [CrossRef]
- Kwak, B.W.; Song, J.H.; Kim, B.S.; Shon, I.J. Mechanical properties and rapid sintering of nanostructured WC and WC-TiAl3 hard materials by the pulsed current activated heating. Int. J. Refract. Met. Hard Mater. 2016, 54, 244–250. [Google Scholar] [CrossRef]
- Huang, B.; Chen, L.D.; Bai, S.Q. Bulk ultrafine binderless WC prepared by spark plasma sintering. Scripta Mater. 2006, 54, 441–445. [Google Scholar] [CrossRef]
- Norgren, S.; Holmstrom, E.; Linder, D. Cemented Carbide with Alternative. Binder. Patent US 11 213 892 B2, 4 January 2022. [Google Scholar]
- Wittmann, B.; Schubert, W.D.; Lux, B. WC grain growth and grain growth inhibition in nickel and iron binder hardmetals. Int. J. Refract. Met. Hard Mater. 2002, 20, 51–60. [Google Scholar] [CrossRef]
- Fernandes, C.M.; Senos, A.M.R. Cemented carbide phase diagrams: A review. Int. J. Refract. Met. Hard Mater. 2011, 29, 405–418. [Google Scholar] [CrossRef]
- Gonzalez, R.; Echeberria, J.; Sanchez, J.M.; Castro, F. WC-(Fe,Ni,C) hardmetals with improved toughness through isothermal heat-treatments. J. Mater. Sci. 1995, 30, 3435–3439. [Google Scholar] [CrossRef]
- Shon, I.J.; Jeong, I.K.; Ko, I.Y.; Doh, J.M.; Woo, K.D. Sintering behavior and mechanical properties of WC-10Co, WC-10Ni and WC-10Fe hard materials produced by high-frequency induction heated sintering. Ceram. Int. 2009, 35, 339–344. [Google Scholar] [CrossRef]
- Schubert, W.D.; Fugger, M.; Wittmann, B.; Useldinger, R. Aspects of sintering of cemented carbides with Fe-based binders. Int. J. Refract. Met. Hard Mater. 2015, 49, 110–123. [Google Scholar] [CrossRef]
- Norgren, S.; Garcia, J.; Blomqvist, A.; Yin, L. Trends in the P/M hard metal industry. Int. J. Refract. Met. Hard Mater. 2015, 48, 31–45. [Google Scholar] [CrossRef]
- Gille, G.; Bredthauer, J.; Gries, B.; Mende, B.; Heinrich, W. Advanced and new grades of WC and binder powder-their properties and application. Int. J. Refract. Met. Hard Mater. 2000, 18, 87–102. [Google Scholar] [CrossRef]
- Garcia, J. Investigations on kinetics of formation of fcc-free surface layers on cemented carbides with Fe-Ni-Co binders. Int. J. Refract. Met. Hard Mater. 2011, 29, 306–311. [Google Scholar] [CrossRef]
- Alvaredo, P.; Tsipas, S.A.; Gordo, E. Influence of carbon content on the sinterability of an FeCr matrix cermet reinforced with TiCN. Int. J. Refract. Met. Hard Mater. 2013, 36, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Habibi Rad, M.; Ahmadian, M.; Golozar, M.A. Investigation of the corrosion behavior of WC–FeAl–B composites in aqueous media. Int. J. Refract. Met. Hard Mater. 2012, 35, 62–69. [Google Scholar] [CrossRef]
- Ahmadian, M.; Wexler, D.; Calka, A.; Chandra, T. Liquid phase sintering of WC-FeAl and WC-Ni3Al composites with and without boron. Mater. Sci. Forum 2003, 426–432, 1951–1956. [Google Scholar] [CrossRef]
- Fernandes, C.M.; Senos, A.M.R.; Vieira, M.T.; Antunes, J.M. Mechanical characterization of composites prepared from WC powders coated with Ni rich binders. Int. J. Refract. Met. Hard Mater. 2008, 26, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, C.M.; Senos, A.M.R.; Vieira, M.T. Versatility of the sputtering technique in the processing of WC-Fe-Ni-Cr composites. Surf. Coat. Tech. 2012, 206, 4915–4921. [Google Scholar] [CrossRef]
- Chang, S.H.; Chang, M.H.; Huang, K.T. Study on the sintered characteristics and properties of nanostructured WC-15 wt% (Fe-Ni-Co) and WC-15 wt% Co hard metal alloys. J. Alloys Compd. 2015, 649, 89–95. [Google Scholar] [CrossRef]
- Reichel, B.; Wagner, K.; Janisch, D.S.; Lengauer, W. Alloyed W-(Co,Ni,Fe)-C phases for reaction sintering of hardmetals. Int. J. Refract. Met. Hard Mater. 2010, 28, 638–645. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Liu, J.W.; Tang, H.G.; Ma, X.F.; Zhao, W. Investigation on the mechanical properties of WC-Fe-Cu hard alloys. J. Alloys Compd. 2015, 632, 729–734. [Google Scholar] [CrossRef]
- Razavi, M.; Rahimipour, M.R.; Yazdani-Rad, R. Synthesis of Fe-WC nanocomposite from industrial ferrotungsten via mechanical alloying method. Adv. Appl. Ceram. 2011, 110, 367–374. [Google Scholar] [CrossRef]
- Shon, I.J. Rapid consolidation of nanostructured WC-FeAl hard composites by high-frequency induction heating and its mechanical properties. Int. J. Refract. Met. Hard Mater. 2016, 61, 185–191. [Google Scholar] [CrossRef]
- Mosbah, A.Y.; Wexler, D.; Calka, A. Tungsten carbide iron aluminide hardmetals: Nanocrystalline vs. microcrystalline. J. Metastable Nanocryst. Mater. 2001, 10, 649–654. [Google Scholar] [CrossRef]
- Furushima, R.; Katou, K.; Shimojima, K.; Hosokawa, H.; Matsumoto, A. Control of WC grain sizes and mechanical properties in WC-FeAl composite fabricated from vacuum sintering technique. Int. J. Refract. Met. Hard Mater. 2015, 50, 16–22. [Google Scholar] [CrossRef]
- Huang, S.G.; Van der Biest, O.; Vleugels, J. Pulsed electric current sintered Fe3Al bonded WC composites. Int. J. Refract. Met. Hard Mater. 2009, 27, 1019–1023. [Google Scholar] [CrossRef]
- Hanyaloglu, C.; Aksakal, B.; Bolton, J.D. Production and indentation analysis of WC/Fe-Mn as an alternative to cobalt-bonded hardmetals. Mater. Charact. 2001, 47, 315–322. [Google Scholar] [CrossRef]
- Maccio, M.R.; Berns, H. Sintered hardmetals with iron-manganese binder. Powder Metall. 2012, 55, 101–109. [Google Scholar] [CrossRef]
- Qian, C.; Kun, L.I.; Guo, X.; Liu, B.; Long, Z.; Liu, Y. Effect of WC grain size on mechanical properties and microstructures of cemented carbide with medium entropy alloy Co-Ni-Fe binder. J. Cent. South Univ. 2020, 27, 1146–1157. [Google Scholar] [CrossRef]
- Machado, I.F.; Girardini, L.; Lonardelli, I.; Molinari, A. The study of ternary carbides formation during SPS consolidation process in the WC-Co-steel system. Int. J. Refract. Met. Hard Mater. 2009, 27, 883–891. [Google Scholar] [CrossRef]
- Oliveira, A.B.; Bastos, A.C.; Fernandes, C.M.; Pinho, C.M.S.; Senos, A.M.R.; Soares, E.; Sacramento, J.; Zheludkevich, M.L.; Ferreira, M.G.S. Corrosion behaviour of WC-10% AISI 304 cemented carbides. Corros. Sci. 2015, 100, 322–331. [Google Scholar] [CrossRef]
- Fernandes, C.M.; Senos, A.M.R.; Vieira, M.T. Sintering of tungsten carbide particles sputter-deposited with stainless steel. Int. J. Refract. Met. Hard Mater. 2003, 21, 147–154. [Google Scholar] [CrossRef]
- Fernandes, C.M.; Senos, A.M.R.; Vieira, M.T. Microscopic characterization of the thermal evolution of stainless steel coatings sputter-deposited onto WC particles. Microsc. Microanal. 2008, 14, 39–40. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, C.M.; Vilhena, L.M.; Pinho, C.M.S.; Oliveira, F.J.; Soares, E.; Sacramento, J.; Senos, A.M.R. Mechanical characterization of WC-10 wt% AISI 304 cemented carbides. Mater. Sci. Eng. A 2014, 618, 629–636. [Google Scholar] [CrossRef]
- Lou, D.; Hellman, J.; Luhulima, D.; Liimatainen, J.; Lindroos, V.K. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites. Mater. Sci. Eng. A 2003, 340, 155–162. [Google Scholar] [CrossRef]
- Bounhoure, V.; Lay, S.; Coindeau, S.; Norgren, S.; Pauty, E.; Missiaen, J.M. Effect of Cr addition on solid state sintering of WC-Co alloys. Int. J. Refract. Met. Hard Mater. 2015, 52, 21–28. [Google Scholar] [CrossRef]
- Huang, Z.; Ren, X.R.; Liu, M.X.; Xu, C.; Zhang, X.H.; Guo, S.D.; Chen, H. Effect of Cu on the microstructures and properties of WC-6Co cemented carbides fabricated by SPS. Int. J. Refract. Met. Hard Mater. 2017, 62, 155–160. [Google Scholar] [CrossRef]
- Lin, N.; Jiang, Y.; Zhang, D.F.; Wu, C.H.; He, Y.H.; Xiao, D.H. Effect of Cu, Ni on the property and microstructure of ultrafine WC-10Co alloys by sinter-hipping. Int. J. Refract. Met. Hard Mater. 2011, 29, 509–515. [Google Scholar] [CrossRef]
- Arenas, F.J.; Matos, A.; Cabezas, M.; Di Rauso, C.; Grigorescu, C. Densification, mechanical properties and wear behavior of WC-VC-Co-Al hardmetals. Int. J. Refract. Met. Hard Mater. 2001, 19, 381–387. [Google Scholar] [CrossRef]
- Kim, J.; Suh, Y.J.; Kang, L. First-principles calculations of the phase stability and the elastic and mechanical properties of eta-phases in the WC-Co system. J. Alloys Compd. 2016, 656, 213–217. [Google Scholar] [CrossRef]
- Ren, X.Y.; Peng, Z.J.; Wang, C.B.; Fu, Z.Q.; Qi, L.H.; Miao, H.Z. Effect of ZrC nanopowder addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2015, 48, 398–407. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, J.F.; Fang, Q.F. Effect of chromium content on microstructure and corrosion behavior of W-Cr-C coatings prepared on tungsten substrate. Front. Mater. Sci. 2015, 9, 77–84. [Google Scholar] [CrossRef]
- Silva, V.L.; Fernandes, C.M.; Senos, A.M.R. Copper wettability on tungsten carbide surfaces. Ceram. Int. 2016, 42, 1191–1196. [Google Scholar] [CrossRef]
- Ray, N.; Kempf, B.; Mutzel, T.; Heringhaus, F.; Froyen, L.; Vanmeensel, K.; Vleugels, J. Effect of Ni addition on the contact resistance of Ag-WC electrical contacts. J. Alloys Compd. 2016, 670, 188–197. [Google Scholar] [CrossRef]
- Puga, J.B.; Fernandes, C.M.; Vieira, M.T.; Senos, A.M.R. Morphological characterization by scanning electron microscopy of WC powder particles coated with Cu. Microsc. Microanal. 2013, 19, 145–146. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.S.; Yang, C.C.; Chai, H.Y.; Yeh, J.W.; Chau, J.L.H. Novel cermet material of WC/multi-element alloy. Int. J. Refract. Met. Hard Mater. 2014, 43, 200–204. [Google Scholar] [CrossRef]
- Shon, I.J. Effect of Al on sintering and mechanical properties of WC-Al composites. Ceram. Int. 2016, 42, 17884–17891. [Google Scholar] [CrossRef]
- Konyashin, I.; Lachmann, F.; Ries, B.; Mazilkin, A.A.; Straumal, B.B.; Kübel, C.; Llanes, L.; Baretzky, B. Strengthening zones in the Co matrix of WC–Co cemented carbides. Scripta Mater. 2014, 83, 17–20. [Google Scholar] [CrossRef]
- Lindera, D.; Holmström, E.; Norgren, S. High entropy alloy binders in gradient sintered hardmetal. Int. J. Refr. Met. Hard Mater. 2018, 71, 217–220. [Google Scholar] [CrossRef]
- Zhou, P.-F.; Xiao, D.-H.; Yuan, T.-C. Comparison between ultrafinegrained WC–Co and WC–HEA-cemented carbides. Powder Metall. 2017, 60, 1–6. [Google Scholar] [CrossRef]
- Zhou, P.L.; Xiao, D.H.; Zhou, P.F.; Yuan, T.C. Microstructure and properties of ultrafine grained AlCrFeCoNi/WC cemented carbides. Ceram. Intern. 2018, 44, 17160–17166. [Google Scholar] [CrossRef]
- Luo, W.; Liu, Y.; Shen, J. Effects of binders on the microstructures and mechanical properties of ultrafineWC-10%AlxCoCrCuFeNi composites by spark plasma sintering. J. Alloys Compd. 2019, 791, 540–549. [Google Scholar] [CrossRef]
- Chen, R.; Zheng, S.; Zhou, R.; Wei, B.; Yang, G.; Chen, P.; Cheng, J. Development of cemented carbides with CoxFeNiCrCu high-entropy alloyed binder prepared by spark plasma sintering. Int. J. Refr. Met. Hard Mater. 2022, 103, 105751. [Google Scholar] [CrossRef]
- De Oro Calderon, R.; Edtmaier, C.; Schubert, W.-D. Novel binders for WC-based cemented carbides with high Cr contents. Int. J. Refr. Met. Hard Mater. 2019, 85, 105063. [Google Scholar] [CrossRef]
- Dong, D.; Xiang, X.; Huang, B.; Xiong, H.; Zhang, L.; Shi, K.; Liao, J. Microstructure and properties of WC-Co/CrMnFeCoNi composite cemented carbides. Vacuum 2020, 179, 109571. [Google Scholar] [CrossRef]
- Velo, I.L.; Gotor, F.J.; Alcalá, M.D.; Real, C.; Córdoba, J.M. Fabrication and characterization of WC-HEA cemented carbide based on the CoCrFeNiMn high entropy alloy. J. Alloys Compd. 2018, 746, 1–8. [Google Scholar] [CrossRef]
- Holmström, E.; Lizárrag, R.; Linder, D.; Salmasi, A.; Wang, W.; Kaplan, B.; Mao, H.; Larsson, H.; Vitos, L. High entropy alloys: Substituting for cobalt in cutting edge technology. Appl. Mater. Today 2018, 12, 322–329. [Google Scholar] [CrossRef]
- Pittari III, J.J.; Murdoch, H.A.; Kilczewski, S.M.; Hornbuckle, B.C.; Swab, J.J.; Darling, K.A.; Wright, J.C. Sintering of tungsten carbide cermets with an iron-based ternary alloy binder: Processing and thermodynamic considerations. Int. J. Refr. Met. Hard Mater. 2018, 76, 1–11. [Google Scholar] [CrossRef]
- Ryzhkin, A.A.; Burlakova, V.E.; Moiseev, D.V.; Puchkin, V.N.; Fominoff, E.V. Determination of the efficiency of high entropy cutting tool materials. J. Frict. Wear 2016, 37, 47–54. [Google Scholar] [CrossRef]
- Mueller-Grunz, A.; Alveen, P.; Rassbach, S.; Useldinger, R.; Moseley, S. The manufacture and characterization of WC-(Al)CoCrCuFeNi cemented carbides with nominally high entropy alloy binders. Int. J. Refr. Met. Hard Mater. 2019, 84, 105032. [Google Scholar] [CrossRef]
- Qian, C.; Liu, Y.; Cheng, H.; Li, K.; Liu, B. Effect of the carbon content on the morphology evolution of the η phase in cemented carbides with the CoNiFeCr high entropy alloy binder. Int. J. Refr. Met. Hard Mater. 2022, 102, 105731. [Google Scholar] [CrossRef]
- Luo, W.; Liu, Y.; Liu, X.; Zhou, Z. Oxidation behavior of ultrafine WC-based cemented carbides with AlxCoCrCuFeNi high-entropy alloy binders. Ceram. Intern. 2021, 47, 8498–8509. [Google Scholar] [CrossRef]
- Li, C.-W.; Chang, K.-C.; Yeh, A.-C. On the microstructure and properties of an advanced cemented carbide system processed by selective laser melting. J. Alloys Compd. 2019, 782, 440–450. [Google Scholar] [CrossRef]
- Li, X.; Wei, D.; Vitos, L.; Lizárrag, R. Micro-mechanical properties of new alternative binders for cemented carbides: CoCrFeNiWx high-entropy alloys. J. Alloys Compd. 2020, 820, 153141. [Google Scholar] [CrossRef]
- Bratberg, J.; Jansson, B. Thermodynamic evaluation of the C–Co–W–Hf–Zr system for cemented carbides. JPEDAV 2006, 27, 213–219. [Google Scholar] [CrossRef]
- Yadav, S.; Zhang, Q.; Behera, A.; Haridas, R.S.; Agrawal, P.; Gong, J.; Mishra, R.S. Role of binder phase on the microstructure and mechanical properties of a mechanically alloyed and spark plasma sintered WC-FCC HEA composites. J. Alloys Compd. 2021, 877, 160265. [Google Scholar] [CrossRef]
- De la Obra, A.G.; Sayagués, M.J.; Chicardi, E.; Gotor, F.J. Development of Ti(C,N)-based cermets with (Co,Fe,Ni)-based high entropy alloys as binder phase. J. Alloys Compd. 2020, 814, 152218. [Google Scholar] [CrossRef]
- Luo, W.; Liu, Y.; Luo, Y.; Wu, M. Fabrication and characterization of WC-AlCoCrCuFeNi high-entropy alloy composites by spark plasma sintering. J. Alloys Compd. 2018, 754, 163–170. [Google Scholar] [CrossRef]
- Qian, C.; Li, K.; Cheng, H.; Zhang, W.; Jiang, X.; Liu, Y. Fracture behavior of cemented carbides with CoNiFe medium entropy alloy binder. Int. J. Refr. Met. Hard Mater. 2021, 98, 105547. [Google Scholar] [CrossRef]
- Suetin, D.V.; Medvedeva, N.I. Structural, electronic and magnetic properties of carbides M3W3C(M = Ti, V, Cr, Mn, Fe, Co, Ni). J. Alloy. Compd. 2016, 681, 508–515. [Google Scholar] [CrossRef]
- Konyashin, I.; Straumal, B.B.; Ries, B.; Bulatov, M.F.; Kolesnikova, K.I. Contact angles of WC/WC grain boundaries with binder in cemented carbides with various carbon content. Mater. Lett. 2017, 196, 1–3. [Google Scholar] [CrossRef]
- Konyashin, I.; Ries, B.; Hlawatschek, D.; Zhuk, Y.; Mazilkin, A.; Straumal, B.; Dorn, F.; Park, D. Wear-resistance and hardness: Are they directly related for nanostructured hard materials? Int. J. Refract. Met. Hard Mater. 2015, 49, 203–211. [Google Scholar] [CrossRef]
- Straumal, B.B.; Semenov, V.N.; Kogtenkova, O.A.; Watanabe, T. Pokrovsky-Talapov critical behavior and rough-to-rough ridges of the ∑3 coincidence tilt boundary in Mo. Phys. Rev. Lett. 2004, 92, 196101. [Google Scholar] [CrossRef] [Green Version]
- Straumal, B.B.; Kogtenkova, O.A.; Gornakova, A.S.; Sursaeva, V.G.; Baretzky, B. Review: Grain boundary faceting-roughening phenomena. J. Mater. Sci. 2016, 51, 382–404. [Google Scholar] [CrossRef]
- Ernst, F.; Finnis, M.W.; Koch, A.; Schmidt, C.; Straumal, B.; Gust, W. Structure and energy of twin boundaries in copper. Z. Metallk. 1996, 87, 911–922. [Google Scholar]
- Protasova, S.G.; Kogtenkova, O.A.; Straumal, B.B. Faceting of individual ∑3 Grain boundaries in Al. Mater. Sci. Forum 2007, 558–559, 949–954. [Google Scholar] [CrossRef]
- Straumal, B.B.; Polyakov, S.A.; Bischoff, E.; Gust, W.; Mittemeijer, E.J. Faceting of Σ3 and Σ9 grain boundaries in copper. Interface Sci 2001, 9, 287–292. [Google Scholar] [CrossRef]
- Sursaeva, V.G.; Straumal, B.B.; Gornakova, A.S.; Shvindlerman, L.S.; Gottstein, G. Effect of faceting on grain boundary motion in Zn. Acta Mater. 2008, 56, 2728–2734. [Google Scholar] [CrossRef]
- Straumal, B.B.; Polyakov, S.A.; Bischoff, E.; Gust, W.; Baretzky, B. Faceting of ∑3 and ∑9 grain boundaries in Cu–Bi alloys. Acta Mater. 2005, 53, 247–254. [Google Scholar] [CrossRef]
- Straumal, B.B.; Konyashin, I.; Ries, B.; Straumal, A.B.; Mazilkin, A.A.; Kolesnikova, K.I.; Gusak, A.M.; Baretzky, B. Pseudopartial wetting of WC/WC grain boundaries in cemented carbides. Mater. Lett. 2015, 147, 105–108. [Google Scholar] [CrossRef]
- Straumal, B.B.; Korneva, A.; Kuzmin, A.; Lopez, G.; Rabkin, E.; Straumal, A.B.; Gerstein, G.; Gornakova, A.S. The grain boundary wetting phenomena in the Ti-containing high entropy alloys: A review. Metals 2021, 11, 1881. [Google Scholar] [CrossRef]
- Straumal, B.B.; Korneva, A.; Lopez, G.A.; Kuzmin, A.; Rabkin, E.; Gerstein, G.; Straumal, A.B.; Gornakova, A.S. Grain boundary wetting by a second solid phase in the high entropy alloys: A review. Materials 2021, 14, 7506. [Google Scholar] [CrossRef]
- Straumal, B.B.; Kulagin, R.; Baretzky, B.; Anisimova, N.Y.; Kiselevskiy, M.V.; Klinger, L.; Straumal, P.B.; Kogtenkova, O.A.; Valiev, R.Z. Severe plastic deformation and phase transformations in high entropy alloys: A review. Crystals 2022, 12, 54. [Google Scholar] [CrossRef]
Group of Alternative Binders | Composition and Reference |
---|---|
Iron and iron-based alloys | Fe–Ni, Fe–Ni–Co, Fe–Cr, Fe–Al [8], Fe–Ni–C [9] 10 wt.% Fe [10] Fe–Ni, Fe–Ni–Co, Fe–Mn [11,12] Fe–Ni–Co [13,14] Fe–Cr–Ti(C,N) [15] Fe–Al–B [16] FeAl, Ni3Al [17] Fe–Ni–Cr [18,19] Fe–Ni–Co [20] Alloyed κ-W9Fe3C4, κ-W9Ni3C4, and κ-W9 (Fe/Ni)3C4 phases [21] Fe–Cu [22] Fe, FeAl [23,24,25] FeAl with VC and/or Cr3C2 [26] Fe3Al [27] Fe–Mn [28,29] Fe–Ni–C [30] H13 Hudson tool steel [31] AISI 304 stainless steel [32,33,34,35] High vanadium tool steels PM 10 V and PM 15 V [36] |
Cobalt-based alloys | Fe–Ni–Co [13,20] Fe–Cr–Co [37] Fe–Cu–Co [38] Fe–Cu–Ni–Co [39] |
Carbide binders | Fe–Cr–Ti(C,N) [15] κ-W9Fe3C4, κ-W9Ni3C4, and κ-W9 (Fe/Ni)3C4 phases [21] FeAl with VC and/or Cr3C2 [26], VC and Al [40], W6Co6C [41], ZrC [42], WCrC [43,44] |
η-phases | W2C, W3Co3C, W4Co2C, and W6Co6C [41], ZrC [42], WCrC [43,44], AgNi [45] |
Various pure metals | Al [40], Cr [37], Cu [38,46], Al [47,48] |
Nickel and nickel-based alloys | [7,10,12,17,18,39] |
Alloys, Reference | Ecorr, V | Icorr, mA cm−2 | Solution |
---|---|---|---|
WC–10 wt.%Co [51] | –0.272 | 14.371 | 0.1 M sulphuric acid |
WC–10 wt.% HEA [51] | –0.281 | 3.404 | 0.1 M sulphuric acid |
WC–20 wt.% HEA [51] | –0.289 | 1.549 | 0.1 M sulphuric acid |
Alloys, Compositions and Sintering Temperatures °C | Hardness, Vickers Units | Fracture Toughness, MPa.m1/2 | Compression Strength, MPa |
---|---|---|---|
WC–10 wt.%Co, 1500 °C [51] | 1910 | 8.10 | 3595 |
WC–10 wt.% HEA, 1500 °C [51] | 2231 | 8.33 | 5219 |
WC–20 wt.% HEA, 1500 °C [51] | 2358 | 12.10 | 5420 |
WC–10 wt.% HEA, 1300 °C [52] | 1200 | 7.5 | 2110 |
WC–10 wt.% HEA, 1400 °C [52] | 2160 | 7.0 | 4395 |
WC–10 wt.% HEA, 1450 °C [52] | 2090 | 6.9 | 4125 |
WC–20 wt.% HEA, 1300 °C [52] | 1600 | 9.2 | 3530 |
WC–20 wt.% HEA, 1400 °C [52] | 1701 | 9.5 | 3644 |
WC–20 wt.% HEA, 1450 °C [52] | 1640 | 9.9 | 3507 |
WC–10 wt.%Co, 1500 °C [71] | 1784 | 7.5 | - |
WC-10CoFeNiCrCu, 1300 °C [54] | 1570 | 9.2 | - |
WC-10CoFeNiCrCu, 1350 °C [54] | 1810 | 11.2 | - |
WC-10CoFeNiCrCu, 1400 °C [54] | 1952 | 10.8 | - |
WC-10CoFeNiCrCu, 1450 °C [54] | 1870 | 10.7 | - |
Conventional WC-10 wt.%Co [54] | 1544 | 9.1 | - |
WC-10 AlxCoCrCuFeNi, x = 0 [52] | 1820 | 9.8 | - |
WC-10 AlxCoCrCuFeNi, x = 0.5 [52] | 2070 | 10.3 | - |
WC-10 AlxCoCrCuFeNi, x = 1.0 [52] | 2040 | 9.9 | - |
WC-10 AlxCoCrCuFeNi, x = 1.5 [52] | 2130 | 9.8 | - |
WC–10 wt.%Co [56] | 1458 | 10.1 | - |
WC–7.5 wt.%Co–2.5 wt.% HEA [56] | 1550 | 8.2 | - |
WC–5 wt.%Co–5 wt.% HEA [56] | 1679 | 6.4 | - |
WC–10 wt.% HEA [56] | 1004 | 5.4 | - |
WC–10 wt.%Co–5 wt.% HEA [56] | 1421 | 10.8 | - |
WC–10 wt.%Co–10 wt.% HEA [56] | 1222 | 17.8 | - |
WC–10 wt.%FeNiZr, 2000 A [59] | 1581 | - | - |
WC–10 wt.%FeNiZr, 1850 A [59] | 1550 | - | - |
WC–10 wt.%FeNiZr, 1800 A [59] | 1540 | - | - |
WC–Co [70] | - | 12.1–16.2 | - |
WC–CoNiFe [70] | - | 13.2–17.8 | - |
WC–10Co7Ni2Fe1Cr4.5C (wt.%) [62] | 1080 | - | Transverse rupture strength 1800 |
WC–10Co7Ni2Fe1Cr4.7C (wt.%) [62] | 1000 | - | 1700 |
WC–10Co7Ni2Fe1Cr4.9C (wt.%) [62] | 950 | - | 3450 |
WC–CoCrFeNi [65] | 1394 | - | Ultimate tensile strength 629 |
WC– (CoCrFeNi)0.96W0.04 [65] | 1712 | - | 687 |
WC–10 wt.%(Co27.4Cr13.8Fe27.4Ni27.4Mo4) [67] | 2141 | 10.5 | - |
WC–20 wt.% (Co27.4Cr13.8Fe27.4Ni27.4Mo4) [67] | 2039 | 9.5 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Straumal, B.; Konyashin, I. WC-Based Cemented Carbides with High Entropy Alloyed Binders: A Review. Metals 2023, 13, 171. https://doi.org/10.3390/met13010171
Straumal B, Konyashin I. WC-Based Cemented Carbides with High Entropy Alloyed Binders: A Review. Metals. 2023; 13(1):171. https://doi.org/10.3390/met13010171
Chicago/Turabian StyleStraumal, Boris, and Igor Konyashin. 2023. "WC-Based Cemented Carbides with High Entropy Alloyed Binders: A Review" Metals 13, no. 1: 171. https://doi.org/10.3390/met13010171
APA StyleStraumal, B., & Konyashin, I. (2023). WC-Based Cemented Carbides with High Entropy Alloyed Binders: A Review. Metals, 13(1), 171. https://doi.org/10.3390/met13010171