Metallurgical Quality of Cast Iron Made from Steel Scrap and Possibilities of Its Improvement
Abstract
:1. Introduction
2. Materials and Methods
- (a)
- Normal operating semi-synthetic cast iron;
- (b)
- Melt with inoculant (FeSi) and temperature increase (1500 °C);
- (c)
- Melt with inoculant (FeSi), temperature increase (1500 °C) and FeTi60 microalloying;
- (d)
- Melt with inoculant (FeSi), temperature 1450 °C, increased content of C (+0.5%) and reduced content of Si;
- (e)
- Synthetic cast iron, inoculated with FeSi and SiC, temperature 1450 °C;
- (f)
- Synthetic cast iron, inoculated with FeSi and FeTi60 microalloying.
- -
- Chemical analysis;
- -
- -
- Tensile strength Rm (test bars with a diameter of 30 mm);
- -
- -
- Occurrence of contractions (cast cylinders with a diameter of 95 mm and a height of 150 mm). Dimensions and volumes were taken before and after shrinkage;
- -
- Nitrogen content.
3. Results and Discussion
4. Conclusions
- -
- Increase in mechanical properties (tensile strength, HB hardness) and quality criteria of superheated and inoculated synthetic cast iron;
- -
- Low dispersion of hardness HB in relation to the thickness of the cast wall (R-block);
- -
- Good casting properties;
- -
- Increased C content and lower Si content slightly worsens the mechanical properties, but on the other side, there is a lower dispersion of hardness HB;
- -
- In cast iron that was alloyed with Ti, a significant improvement in mechanical properties, especially hardness, depending on the thickness of the casting wall (low dispersion).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kukartsev, V.A.; Cherepanov, A.I.; Kukartsev, V.V.; Mikhalev, A.; Makarchuk, I.Y. Increasing the Efficiency of Production of Synthetic Cast Iron. Key Eng. Mater. 2021, 904, 3–8. [Google Scholar] [CrossRef]
- Riposan, I.; Chisamera, M.; Stan, S. Enhanced quality in electric melt grey cast irons. ISIJ Int. 2013, 53, 1683–1695. [Google Scholar] [CrossRef] [Green Version]
- Futas, P.; Pribulova, A.; Petrik, J.; Pokusova, M.; Junakova, A. The study of synthetic cast iron quality made from steel scrap. In Proceedings of International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, Albena, Bulgaria 2–8 July 2018; SGEM: Sofia, Bulgaria, 2018; Volume 18, pp. 321–329. [Google Scholar] [CrossRef]
- Futas, P.; Pribulova, A.; Fedorko, G.; Molnár, V. Influence of steel scrap in the charge on the properties of gray cast iron. ISIJ Int. 2017, 57, 374–379. [Google Scholar] [CrossRef] [Green Version]
- Dey, A.K. Energy efficiency model for induction furnace. In IOP Conference Series: Materials Science and Engineering, Proceedings of 2017 International Conference on Aerospace Technology, Communications and Energy Systems (ATCES 2017), Samara, Russia, 28–30 September 2017; IOP Publishing Ltd.: Bristol, UK, 2018; Volume 302, p. 012047. [Google Scholar] [CrossRef]
- Snigir, A.N.; Savitsky, E.M.; Saikin, T.V.; Petrov, G.B. Control over the process of formation of the structure and properties of cast iron by thermal analysis method. Thermochim. Acta 1985, 93, 657–660. [Google Scholar] [CrossRef]
- Medyński, D.; Janus, A. Effect of Cr, Mo and Al on Structure and Selected Mechanical Properties of Austenitic Cast Iron. Arch. Foundry Eng. 2019, 19, 39–44. [Google Scholar] [CrossRef]
- Kaczorowski, M.; Myszka, D. On the differences between mechanical properties and structure of ductile iron castings austempered using conventional and direct method. Int. J. Manuf. Sci. Technol. 2005, 7, 33–39. [Google Scholar]
- Sarkar, T.; Bose, P.K.; Sutradhar, G. Mechanical and tribological characteristics of copper alloyed austempered gray cast iron (AGI). In Materials Today: Proceedings, Proceedings of 7th International Conference of Materials Processing and Characterization, Hyderabad, India,17–19 March 2017; Gokaraju Rangaraju Institute of Engineering & Technology: Hyderabad, India, 2018; Volume 5, pp. 3664–3673. [Google Scholar]
- Futas, P.; Pribulova, A. Evaluation of Metallurgical Quality of Cast Iron Using Quality Criteria. Pyrometallurgy—New Perspectives [Working Title]; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Vozdviženskij, V.; Graov, V.A.M.; Spasskij, V.V. Litejnyje Splavy i Technologia Ich Plavky v Mašinostrojenii; Mašinostrojenije: Moscow, Russia, 1984. [Google Scholar]
- Callister, W.D. Materials Science and Engineering; Department of metallurgical engineering, The University of Utah: Salt Lake City, UT, USA, 2009; ISBN 13-978-0-471-73696-7. [Google Scholar]
- Collini, L.; Nicoletto, G.; Konecna, R. Microstructure and mechanical properties of pearlitic gray cast iron. Mater. Sci. Eng. 2007, 488, 529–539. [Google Scholar] [CrossRef]
- Kagawa, A.; Okamoto, T. Partition of alloying elements in freezing cast irons and its effect on graphitization and nitrogen blowhole formation. In Foundry Processes; Katz, S., Landefeld, C.F., Eds.; Springer: Boston, MA, USA, 1988. [Google Scholar]
- Wilberfors, F.; Svensson, I. The effect of nitrogen and inoculation on the tensile properties and microstructure of cast iron lamellar. Key Eng. Mater. 2010, 457, 114–119. [Google Scholar] [CrossRef]
- Plachy, J.; Nemec, M. Metalurgie a Technologie Slévárenských Slitin; ČVUT: Prague, Czechia, 1986. [Google Scholar]
- Qujie, Z.H.; Hu, H. Effect of nitrogen on matrix structure of gray cast iron. Acta Metall. Sin. (Engl. Ed.) Ser. A 1993, 6, 370–372. [Google Scholar]
- Kern, R. Controlling Cast Iron Gas Chill out, Charge materials chemistry, melting, practices and molten metal handling procedures are root causes, but chill out can be avoided. In Modern Casting; American Foundry Society: Illinois, IL, USA, 1993; pp. 28–30. [Google Scholar]
- Kern, R. La Maitrise Des Défauts Dus Au Gaz Dans Les Fontes, La Technique. In Hommes Et Fonderie; Edima Avril: Chatou, France, 1994; pp. 13–16. [Google Scholar]
- Futas, P.; Pribulova, A.; Vasková, I. Influence of steel scrap in a charge on cast iron properties. Arch. Foundry Eng. 2008, 8, 71–74. [Google Scholar]
- Lin, Y.; Zhang, Y.; Zhu, N.; Lai, D.; Huang, J.; Wang, K. Effect of Nitrogen on the Microstructure and Mechanical Properties of Gray Cast Iron. JOM 2022, 74, 954–962. [Google Scholar] [CrossRef]
- Lont, A.; Jacek, G.; Damian, J.; Matus, K. The Laser Alloying Process of Ductile Cast Iron Surface with Titanium Powder in Nitrogen Atmosphere. Coatings 2022, 12, 227. [Google Scholar] [CrossRef]
- Sujana, W.; Widi, K.A.; Rahardjo, T.; Prihatmi, T.N. The ability of nitrogen atomic absorption in the formation of iron nitride on flake structure and nodule in cast iron. J. Phys. Conf. Ser. 2021, 1869, 012104. [Google Scholar] [CrossRef]
- Kamińska, J.; Basińska, E.; Stefański1, Z.; Angrecki, M. A comparison of the oxygen, nitrogen and hydrogen content in ductile iron castings and their effect on microstructure and mechanical properties. Inst. Odlew. 2017, LVII, 357–361. [Google Scholar] [CrossRef]
- Futas, P.; Pribulova, A.; Petrík, J.; Malindzakova, M. Elimination of Negative Impacts of Steel Scrap as a Charge Component during the Production of Synthetic Cast Iron. Communications 2016, 18, 60–64. [Google Scholar] [CrossRef]
- Futas, P.; Pribulova, A. Quality criteria as implement for advisement of metallurgical quality of grey iron. In Evaluation of People and Products Features; University of Maribor: Celje, Slovenia, 2014; pp. 99–118. ISBN 978-961-6562-98-0. [Google Scholar]
- Johnson, B.D.; Heine, R.W. Nitrogen in Molten Iron Processing and Its Effects. AFS Trans. 2000, 81, 163–169. [Google Scholar]
- Futas, P.; Jelc, I.; Vaskova, I.; Fedorko, G.; Molnar, V.; Kacmary, P. The GIST of thermal stresses of cast iron castings. Manuf. Technol. 2013, 13, 173–178. [Google Scholar]
Melt No. | Charge Material (wt. %) | Temperature [°C] | |||||||
---|---|---|---|---|---|---|---|---|---|
Steel Scrap (Sheet Metal) | Return Material | PIG Iron | FeSi75 | FeMn80 | Carburizer (Desulco 9001) | Inoculant (Added to the Iron Stream) | FeTi60 | ||
1. | 32.8 | 53.3 | 10 | - | 0.4 | 1.3 | 0.20 | - | 1420 |
2. | 35.5 | 52.9 | 9.8 | 0.12 | 0.5 | 0.98 | 0.20 | - | 1500 |
3. | 35.5 | 52.9 | 9.8 | 0.12 | 0.5 | 0.98 | 0.20 | 0.28 * | 1500 |
4. | 82.7 | - | 13 | 0.22 | 0.47 | 3.45 | 0.20 | - | 1450 |
5. | 97.8 | - | - | 0.59 | 0.4 | 0.67 | 0.34 + 0.2 ** | - | 1450 |
6. | 97.5 | - | - | 0.60 | 0.47 | 0.67 | 0.50 | 0.26 * | 1520 |
Melt No. | wt. [%] | Sc | CE [%] | Rm [MPa] | HB | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | Si | Mn | P | S | Ti | N2 | |||||
1. | 3.23 | 1.612 | 0.657 | 0.024 | 0.025 | - | 0.0113 | 0.848 | 3.721 | 297 | 186 * (205) |
2. | 3.33 | 1.52 | 0.664 | 0.024 | 0.021 | - | 0.0113 | 0.868 | 3.793 | 352 | 204 * (223) |
3. | 3.32 | 1.486 | 0.658 | 0.023 | 0.021 | 0.183 | 0.0091 | 0.863 | 3.773 | 268 | 217 * (224) |
4. | 3.79 | 1.026 | 0.773 | 0.018 | 0.012 | - | 0.0073 | 0.951 | 4.103 | 256 | 211 * (221) |
5. | 3.28 | 1.69 | 0.84 | 0.06 | 0.061 | - | 0.0175 | 0.869 | 3.805 | 258 | 243 * (312) |
6. | 3.13 | 1.61 | 0.79 | 0.016 | 0.011 | 0.192 | 0.0205 | 0.821 | 3.618 | 220 | 197 * (209) |
Melt No. | Chillout Depth [mm] |
---|---|
1. | 5 |
2. | 1 |
3. | 1 |
4. | 6 |
5. | 10 |
6. | 2 |
Melt No. | Pearlite [%] | Size of Graphite [µm] | Graphite Distribution |
---|---|---|---|
1. | 92 | 60–120 | Type C–mixed |
2. | 96 | 60–120 | Type D–interdendritic undirected |
3. | 96 | 30–60 | Type E–interdendritic undirected |
4. | 96 | 120–250 | Type C–mixed |
5. | 100 | 60–250 | Type C–mixed |
6. | 96 | 60–120 | Type C–mixed |
Melt No. | Quality Criteria | |||
---|---|---|---|---|
RG [%] | RH | GZ | m | |
1. | 94.25 | 0.805 | 117.036 | 1.599 |
2. | 117.4 | 0.803 | 146.166 | 1.719 |
3. | 88.3 | 0.996 | 88.643 | 1.235 |
4. | 109.2 | 0.996 | 109.643 | 1.210 |
5. | 86.2 | 1.143 | 75.427 | 1.057 |
6. | 65.383 | 1.001 | 65.317 | 1.117 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Futas, P.; Pribulova, A.; Petrik, J.; Blasko, P.; Junakova, A.; Sabik, V. Metallurgical Quality of Cast Iron Made from Steel Scrap and Possibilities of Its Improvement. Metals 2023, 13, 27. https://doi.org/10.3390/met13010027
Futas P, Pribulova A, Petrik J, Blasko P, Junakova A, Sabik V. Metallurgical Quality of Cast Iron Made from Steel Scrap and Possibilities of Its Improvement. Metals. 2023; 13(1):27. https://doi.org/10.3390/met13010027
Chicago/Turabian StyleFutas, Peter, Alena Pribulova, Jozef Petrik, Peter Blasko, Andrea Junakova, and Vladimir Sabik. 2023. "Metallurgical Quality of Cast Iron Made from Steel Scrap and Possibilities of Its Improvement" Metals 13, no. 1: 27. https://doi.org/10.3390/met13010027
APA StyleFutas, P., Pribulova, A., Petrik, J., Blasko, P., Junakova, A., & Sabik, V. (2023). Metallurgical Quality of Cast Iron Made from Steel Scrap and Possibilities of Its Improvement. Metals, 13(1), 27. https://doi.org/10.3390/met13010027