Influence of a Pronounced Pre-Deformation on the Attachment of Melt Droplets and the Fatigue Behavior of Laser-Cut AISI 304
Abstract
:1. Introduction
2. Material and Methods
2.1. Specimen Preparation
2.2. Examination of Melt Droplets by Micro-Computed Tomography
2.3. Fatigue Testing
3. Results and Discussion
3.1. Effect of High Pre-Strains on the Bonding of Melt Droplets to the Base Material
3.2. Effect of High Pre-Strains on Fatigue Behavior
4. Conclusions
- -
- Re-solidified material (most often in the form of melt droplets) at the melt ejection site of the laser-cut edge is the dominating fatigue crack initiation site independent of the degree of pre-deformation introduced.
- -
- Melt droplets with good bonding to the base material can show partial detachment at high degrees of deformation.
- -
- Partial detachment of melt droplets leads to mesoscopic notch formation, which causes a significant decrease in fatigue strength and can lead to late failures even at load cycles well beyond the classical “durability limit” (formerly defined at 2 mio. cycles).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ion, J. Laser Processing of Engineering Materials. In Principles, Procedure and Industrial Application, 1st ed.; Hill, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Sharma, A.; Yadava, V. Experimental analysis of Nd-YAG laser cutting of sheet materials—A review. Opt. Laser Technol. 2018, 98, 264–280. [Google Scholar] [CrossRef]
- Lo, K.H.; Shek, C.H.; Lai, J. Recent developments in stainless steels. Mater. Sci. Eng. R Rep. 2009, 65, 39–104. [Google Scholar]
- Davison, R.M.; Laurin, T.R.; Redmond, J.D.; Watanabe, H.; Semchyshen, M. A Review of Worldwide Developments in Stainless Steels. Materials & Design 1986, 7, 111–119. [Google Scholar]
- Davis, J.R. Stainless Steels; ASM International: Materials Park, OH, USA, 2010. [Google Scholar]
- Olson, G.B.; Cohen, M. A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation. Metall. Trans. A 1976, 7, 1897–1904. [Google Scholar]
- Olson, G.B.; Cohen, M. A general mechanism of martensitic nucleation: Part II. FCC → BCC and other martensitic transformations. Metall. Trans. A 1976, 7, 1905–1914. [Google Scholar]
- Meyrick, G.; Powell, G.W. Phase Transformations in Metals and Alloys. Annu. Rev. Mater. Sci. 1973, 3, 327–362. [Google Scholar] [CrossRef]
- Schramm, R.E.; Reed, R.P. Stacking fault energies of seven commercial austenitic stainless steels. Metall. Trans. A 1975, 6, 1345–1351. [Google Scholar] [CrossRef]
- Angel, T. Formation of Martensite in Austenitic Stainless Steels. Effects of Deformation, Temperature, and Composition. J. Iron Steel Inst. 1954, 177, 165–174. [Google Scholar]
- Shen, Y.F.; Li, X.X.; Sun, X.; Wang, Y.D.; Zuo, L. Twinning and martensite in a 304 austenitic stainless steel. Mater. Sci. Eng. A 2012, 552, 514–522. [Google Scholar] [CrossRef]
- Müller-Bollenhagen, C.; Zimmermann, M.; Christ, H.-J. Very high cycle fatigue behaviour of austenitic stainless steel and the effect of strain-induced martensite. Int. J. Fatigue 2010, 32, 936–942. [Google Scholar] [CrossRef]
- Smaga, M.; Walther, F.; Eifler, D. Deformation-induced martensitic transformation in metastable austenitic steels. Mater. Sci. Eng. A 2008, 483–484, 394–397. [Google Scholar] [CrossRef]
- Krupp, U.; Christ, H.-J.; Lezuo, P.; Maier, H.; Teteruk, R. Influence of carbon concentration on martensitic transformation in metastable austenitic steels under cyclic loading conditions. Mater. Sci. Eng. A 2001, 319–321, 527–530. [Google Scholar] [CrossRef]
- Jadhav, A.; Kumar, S. Laser cutting of AISI 304 material: An experimental investigation on surface roughness. Adv. Mater. Process. Technol. 2019, 5, 429–437. [Google Scholar] [CrossRef]
- Geiger, M.; Bergmann, H.W.; Nuss, R. Laser Cutting Of Steel Sheets. In Proceedings Volume 1022, Laser Assisted Processing; Laude, L.D., Rauscher, G.K., Eds.; International Congress on Optical Science and Engineering: Hamburg, Germany, 1988. [Google Scholar]
- Meurling, F.; Melander, A.; Linder, J.; Larsson, M. The influence of mechanical and laser cutting on the fatigue strengths of carbon and stainless sheet steels. Scand. J. Metall. 2001, 30, 309–319. [Google Scholar] [CrossRef]
- Mäntyjärvi, K.; Väisänen, A.; Karjalainen, J.A. Cutting method influence on the fatigue resistance of ultra-high-strength steel. Int. J. Mater. Form. 2009, 2, 547–550. [Google Scholar] [CrossRef]
- Pessoa, D.; Grigorescu, A.; Herwig, P.; Wetzig, A.; Zimmermann, M. Influence of Notch Effects Created by Laser Cutting Process on Fatigue Behavior of Metastable Austenitic Stainless Steel. Procedia Eng. 2016, 160, 175–182. [Google Scholar] [CrossRef]
- Wanski, T.; Zeuner, A.T.; Schöne, S.; Herwig, P.; Mahrle, A.; Wetzig, A.; Zimmermann, M. Investigation of the influence of a two-step process chain consisting of laser cutting and subsequent forming on the fatigue behavior of AISI 304. Int. J. Fatigue 2022, 159, 106779. [Google Scholar] [CrossRef]
- Talonen, J.; Aspegren, P.; Hänninen, H. Comparison of different methods for measuring strain induced α-martensite content in austenitic steels. Mater. Sci. Technol. 2004, 20, 1506–1512. [Google Scholar] [CrossRef]
- Das, A.; Sivaprasad, S.; Ghosh, M.; Chakraborti, P.C.; Tarafder, S. Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel. Mater. Sci. Eng. A 2008, 486, 283–286. [Google Scholar] [CrossRef]
- Hecker, S.S.; Stout, M.G.; Staudhammer, K.P.; Smith, J.L. Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior. Metall. Trans. A 1982, 13, 619–626. [Google Scholar] [CrossRef]
- DIN 50100:2016-12, Fatigue Testing—Performance and Evaluation of Cyclic Tests with Constant Load Amplitude for Metallic Material Specimens and Components. Available online: https://dx.doi.org/10.31030/2580844 (accessed on 20 December 2021).
- Grigorescu, A.; Hilgendorff, P.M.; Zimmermann, M.; Fritzen, C.P.; Christ, H.J. Effect of Geometry and Distribution of Inclusions on the VHCF Properties of a Metastable Austenitic Stainless Steel. Adv. Mater. Res. 2014, 891–892, 440–445. [Google Scholar] [CrossRef]
- Hilgendorff, P.-M.; Grigorescu, A.C.; Zimmermann, M.; Fritzen, C.-P.; Christ, H.-J. Cyclic deformation behavior of austenitic Cr–Ni-steels in the VHCF regime: Part II—Microstructure-sensitive simulation. Int. J. Fatigue 2016, 93, 261–271. [Google Scholar] [CrossRef]
- Bayerlein, M.; Christ, H.-J.; Mughrabi, H. Plasticity-induced martensitic transformation during cyclic deformation of AISI 304L stainless steel. Mater. Sci. Eng. A 1989, 114, L11–L16. [Google Scholar] [CrossRef]
- Smaga, M.; Boemke, A.; Daniel, T.; Skorupski, R.; Sorich, A.; Beck, T. Fatigue Behavior of Metastable Austenitic Stainless Steels in LCF, HCF and VHCF Regimes at Ambient and Elevated Temperatures. Metals 2019, 9, 704. [Google Scholar] [CrossRef] [Green Version]
Element | C | S | P | Mn | Si | Cr | Ni | N | Fe |
---|---|---|---|---|---|---|---|---|---|
wt-% | 0.016 | 0.001 | 0.036 | 1.90 | 0.36 | 18.2 | 8.1 | 0.01 | Bal. |
Yield Strength/MPa | Tensile Strength/MPa | Elongation at Break/% |
---|---|---|
275 | 620 | 54 |
fcoll/mm | ffoc/mm | dnozzle/mm | PL/kW | vf/m∙min−1 | dz/mm | dns/mm | pgas/bar | λL/µm | M2 | df/µm |
---|---|---|---|---|---|---|---|---|---|---|
100 | 150 | 2.3 | 3 | 16.5 | 0 | 0.8 | 11 | 1.03 | 13.0 | 192 |
Series Name | Temperature/K | Strain/% | Strain Rate/mm/min | α’-Content/% | No. of Samples |
---|---|---|---|---|---|
298K-44% | 298 | 44 | 1 | 10 ± 2 | 15 |
273K-28% | 273 | 28 | 1 | 10 ± 2 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeuner, A.T.; Wanski, T.; Schettler, S.; Fell, J.; Wetzig, A.; Kühne, R.; Fischer, S.C.L.; Zimmermann, M. Influence of a Pronounced Pre-Deformation on the Attachment of Melt Droplets and the Fatigue Behavior of Laser-Cut AISI 304. Metals 2023, 13, 201. https://doi.org/10.3390/met13020201
Zeuner AT, Wanski T, Schettler S, Fell J, Wetzig A, Kühne R, Fischer SCL, Zimmermann M. Influence of a Pronounced Pre-Deformation on the Attachment of Melt Droplets and the Fatigue Behavior of Laser-Cut AISI 304. Metals. 2023; 13(2):201. https://doi.org/10.3390/met13020201
Chicago/Turabian StyleZeuner, André T., Thomas Wanski, Sebastian Schettler, Jonas Fell, Andreas Wetzig, Robert Kühne, Sarah C. L. Fischer, and Martina Zimmermann. 2023. "Influence of a Pronounced Pre-Deformation on the Attachment of Melt Droplets and the Fatigue Behavior of Laser-Cut AISI 304" Metals 13, no. 2: 201. https://doi.org/10.3390/met13020201
APA StyleZeuner, A. T., Wanski, T., Schettler, S., Fell, J., Wetzig, A., Kühne, R., Fischer, S. C. L., & Zimmermann, M. (2023). Influence of a Pronounced Pre-Deformation on the Attachment of Melt Droplets and the Fatigue Behavior of Laser-Cut AISI 304. Metals, 13(2), 201. https://doi.org/10.3390/met13020201