Effects of B and Ce Grain Boundary Segregation on Precipitates in Super Austenitic Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Heat-Treatment Process
2.3. Microstructure Characterization
2.4. Corrosion-Resistance Test
3. Results
3.1. Precipitation Behavior
3.2. Corrosion Resistance
4. Discussion
5. Conclusions
- (1)
- Air cooling and low-temperature diffusion prompted co-segregation of B, precipitate-forming elements, and Ce at the grain boundary (GB) at 950 °C. The heat-treatment process could inhibit the precipitation. Ce inhibited the nucleation of the precipitates. B induced the formation of Mo-rich precipitates, and the B-containing precipitates were serrated.
- (2)
- For aging at 950 °C within 3 h, the grain boundary segregation of B and Ce still had an obvious inhibitory effect on precipitates. The heat-treatment process could significantly suppress the segregation of Cr at the grain boundary and change the ratio of Mo and Cr elements in the precipitates. Compared with the traditional solution process, the number of precipitates was fewer and the distribution of precipitates was more intermittent.
- (3)
- The formation of B-containing serrated precipitates decreased the Cr-depleted zone near the grain boundary. This illustrated that the addition of B and Ce could lead to an extreme improvement in the corrosion resistance of S31254 SASSs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.C.; Li, H.B.; Jiang, Z.H.; Li, Z.X.; Wu, J.X.; Zhang, B.B.; Duan, F.; Feng, H.; Zhu, H.C. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654. J. Mater. Sci. Technol. 2020, 42, 143–155. [Google Scholar] [CrossRef]
- Koutsoukis, T.; RedjaMia, A.; Fourlaris, G. Characterization of precipitation sequences in super austenitic stainless steels. Solid State Phenom. 2011, 172, 493–498. [Google Scholar] [CrossRef]
- Meguid, E.; Latif, A. Critical pitting temperature for type 254 SMO stainless steel in chloride solutions. Corros. Sci. 2007, 49, 263–275. [Google Scholar] [CrossRef]
- Zhang, S.C.; Li, H.B.; Jiang, Z.H.; Feng, H.; Wen, Z.J.; Ren, J.Y.; Han, P.D. Unveiling the mechanism of yttrium significantly improving high-temperature oxidation resistance of super austenitic stainless steel S32654. J. Mater. Sci. Technol. 2022, 115, 103–114. [Google Scholar] [CrossRef]
- Dou, Y.P.; Han, S.K.; Wang, L.W.; Wang, X. Characterization of the passive properties of 254SMO stainless steel in simulated desulfurized flue gas condensates by electrochemical analysis, XPS and TOF-SIMS. Corros. Sci. 2020, 165, 108405. [Google Scholar] [CrossRef]
- Neville, A.; Hodgkiess, T. Study of passive film on stainless steels and high-grade nickel base alloy using X-ray photoelectron spectroscopy. Br. Corros. J. 2000, 35, 183–188. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.J.; Sun, Y.H.; Zhao, A.M. The influence of Ce micro-alloying on the precipitation of intermetallic sigma phase during solidification of super austenitic stainless steels. J. Alloys Compd. 2020, 815, 152418. [Google Scholar] [CrossRef]
- Marin, R.; Hervé, C.; Zollinger, J.; Moukrane, D.; Lucile, L.R. σ-phase formation in super austenitic stainless steel during directional solidification and subsequent phase transformations. Metall. Mater. Trans. A 2020, 51, 3526–3534. [Google Scholar] [CrossRef]
- Zhang, S.C.; Jiang, Z.H.; Li, H.B.; Zhang, B.B.; Fan, S.P.; Li, Z.X.; Feng, H.; Zhu, H.C. Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging. Mater. Charact. 2018, 137, 244–255. [Google Scholar] [CrossRef]
- Changmin, L.; Youngchai, L.; Changhee, L.; Hong, S. Precipitation behavior of the sigma phase with Ni and Mn content variations in superaustenitic stainless steel weld metal. Mater. Charact. 2018, 144, 148–154. [Google Scholar]
- Chen, C.; Cheng, G.G. Delta-ferrite distribution in a continuous casting slab of Fe-Cr-Mn austenitic stainless steel. Metall. Mater. Trans. B 2017, 48, 2324–2333. [Google Scholar] [CrossRef]
- Simcoe, C.R.; Elsea, A.R.; Manning, G.K. Study of the effect of boron on the decomposition of austenite. JOM J. Miner. Met. Mater. Soc. 1955, 7, 193–200. [Google Scholar] [CrossRef]
- Ueno, M.; Inoue, T. Distribution of boron at austenite grain boundaries and bainitic transformation in low carbon steels. Trans. Iron Steel Inst. Jpn. 1973, 13, 210–217. [Google Scholar] [CrossRef]
- Wang, T.H.; Wang, J.; Bai, J.G.; Wang, S.J.; Chen, C.; Han, P.D. Effect of boron on dissolution and repairing behavior of passive film on S31254 super austenitic stainless steel immersed in H2SO4 solution. J. Iron Steel Res. Int. 2022, 29, 14. [Google Scholar] [CrossRef]
- Li, S.; Ma, J.Y.; Wang, J.; Fan, G.W.; Li, H.B.; Jiang, Z.H.; Han, P.D.; Liang, W. Impact of boron addition on the hot deformation behavior and microstructure evolution of S31254. Mater. Lett. 2022, 315, 131971.1–131971.4. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, J.Y.; Li, H.B.; Wang, H.X.; Du, Y.W.; Jiang, Z.H.; Han, P.D. Improved corrosion resistance of super austenite stainless steel by B-induced nucleation of Laves phase. Corros. Sci. 2023, 213, 110974. [Google Scholar] [CrossRef]
- Yu, J.T.; Zhang, S.C.; Li, H.B.; Jiang, Z.H.; Feng, H.; Xu, P.P.; Han, P.D. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654. J. Mater. Sci. Technol. 2022, 112, 184–194. [Google Scholar] [CrossRef]
- Wang, X.F.; Chen, W.Q. Influence of cerium on hot workability of 00Cr25Ni7Mo4N super duplex stainless steel. J. Rare Earths 2010, 2, 295–300. [Google Scholar] [CrossRef]
- Jeon, S.H.; Hur, D.H.; Kim, H.J.; Park, Y.S. Effect of Ce addition on the precipitation of deleterious phases and the associated intergranular corrosion resistance of 27Cr-7Ni hyper duplex stainless steels. Corros. Sci. J. Environ. Degrad. Mater. Its Control 2015, 90, 313–322. [Google Scholar] [CrossRef]
- Zhang, S.C.; Yu, J.T.; Li, H.B.; Jiang, Z.H.; Geng, Y.F.; Feng, H.; Zhang, B.B.; Zhu, H.C. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654. J. Mater. Sci. Technol. 2022, 102, 105–114. [Google Scholar] [CrossRef]
- Faulkner, R.G. Combined grain boundary equilibrium and non-equilibrium segregation in ferritic/martensitic steels. Acta Metall. 1987, 35, 2905–2914. [Google Scholar] [CrossRef]
- He, X.L.; Chu, Y.Y.; Jonas, J.J. Grain boundary segregation of boron during continuous cooling. Acta Metall. 1989, 37, 147–161. [Google Scholar] [CrossRef]
- Genichi, S.; Taishi, F.; Takuya, H. Grain boundary segregation behavior of boron in low-alloy steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2014, 45, 1876–1882. [Google Scholar]
- Zhang, X.L.; Xun, M.N.; Ma, J.Y.; Liang, X.H.; Zhang, C.L.; Li, H.B.; Jiang, Z.H.; Fan, G.W.; Han, P.D. Effects of heat treatment on precipitation and corrosion resistance of cerium-containing super austenitic stainless steel S31254. Corros. Commun. 2022, 8, 1–8. [Google Scholar] [CrossRef]
- Lee, J.S.; Fushimi, K.; Nakanishi, T.; Hasegawa, Y.; Park, Y.S. Corrosion behavior of ferrite and austenite phases on super duplex stainless steel in a modified green-death solution. Corros. Sci. 2014, 89, 111–117. [Google Scholar] [CrossRef]
- Xin, J.J.; Song, Y.T.; Fang, C.; Wei, J.; Huang, C.J.; Wang, S.X. Evaluation of inter-granular corrosion susceptibility in 316LN austenitic stainless steel weldments. Fusion Eng. Des. 2018, 133, 70–76. [Google Scholar] [CrossRef]
- Wang, J.; Cui, Y.S.; Bai, J.; Dong, N.; Liu, Y.; Zhang, C.L.; Han, P.D. The mechanism on the B addition to regulate phase precipitation and improve intergranular corrosion resistance in UNS S31254 super austenitic stainless steels. J. Electrochem. Soc. 2019, 166, C600–C608. [Google Scholar] [CrossRef]
- Qurashi, M.S.; Cui, Y.S.; Wang, J.; Dong, N.; Han, P.D. Erosion and passivation of borated 254 SMO stainless steel in simulated flue gas desulfurization solution. Int. J. Electrochem. Sci. 2020, 15, 2987–3002. [Google Scholar] [CrossRef]
- Hong, S.M.; Min, D.J.; Fleur, E. Effect of grain boundary serration on the tensile properties of the super 304H heat resistant austenitic stainless steel. Mater. Sci. Forum 2010, 654, 170–173. [Google Scholar] [CrossRef]
- Kim, K.J. Investigation on the formation of serrated grain boundaries with grain boundary characteristics in an AISI 316 stainless steel. J. Nucl. Mater. 2009, 393, 249–253. [Google Scholar] [CrossRef]
- Hong, H.U.; Kim, I.S.; Choi, B.G.; Kim, M.Y.; Jo, C.Y. The effect of grain boundary serration on creep resistance in a wrought nickel-based superalloy. Mater. Sci. Eng. A 2009, 517, 125–131. [Google Scholar] [CrossRef]
- Letellier, L.; Chambreland, S.; Duval, P.; Blavette, D. Grain boundary segregation in nickel base superalloys Astroloy: An atom-probe study. Appl. Surf. Sci. 1993, 67, 305–310. [Google Scholar] [CrossRef]
- Wang, J.; Cui, Y.S.; Bai, J.G.; Dong, N.; Liu, Y.; Zhang, C.L.; Han, P.D. Effect of B addition on the microstructure and corrosion resistance of S31254 super austenitic stainless steels after solid solution treatment. Mater. Lett. 2019, 252, 60–63. [Google Scholar] [CrossRef]
- Zhang, S.C.; Li, H.B.; Jiang, Z.H.; Zhang, B.B.; Li, Z.X.; Wu, J.X.; Fan, S.P.; Feng, H.; Zhu, H.C. Effects of Cr and Mo on precipitation behavior and associated intergranular corrosion susceptibility of super austenitic stainless steel S32654. Mater. Charact. 2019, 152, 141–150. [Google Scholar] [CrossRef]
Sample | Fe | C | Si | Mn | P | S | Cr | Ni | Mo | Cu | N | B | Ce |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S31254−BCe | Bal. | 0.017 | 0.16 | 1.68 | 0.007 | 0.002 | 19.99 | 17.76 | 5.85 | 0.96 | 0.21 | 0.004 | 0.004 |
Sample | Aging Time | Ecorr (V) | Icorr (A cm−2) | Epit (V) | Ipit (A cm−2) |
---|---|---|---|---|---|
S31254−BCe (SW) | 15 min | 0.347 | 1.271 × 10−5 | 0.981 | 1.426 × 10−4 |
1 h | 0.293 | 1.725 × 10−5 | 0.972 | 1.828 × 10−4 | |
3 h | 0.224 | 2.343 × 10−5 | 0.959 | 2.117 × 10−4 | |
S31254−BCe (AD) | 15 min | 0.391 | 1.091 × 10−5 | 1.091 | 7.238 × 10−5 |
1 h | 0.32 | 1.482 × 10−5 | 0.976 | 1.504 × 10−4 | |
3 h | 0.267 | 1.814 × 10−5 | 0.965 | 1.961 × 10−4 | |
S31254 without BCe [28] | Solution | 0.162 | 1.203 × 10−6 | 0.957 | 2.042 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Ma, J.; Chen, C.; Zhang, C.; Ren, J.; Jiang, Z.; Fan, G.; Han, P. Effects of B and Ce Grain Boundary Segregation on Precipitates in Super Austenitic Stainless Steel. Metals 2023, 13, 326. https://doi.org/10.3390/met13020326
Yang S, Ma J, Chen C, Zhang C, Ren J, Jiang Z, Fan G, Han P. Effects of B and Ce Grain Boundary Segregation on Precipitates in Super Austenitic Stainless Steel. Metals. 2023; 13(2):326. https://doi.org/10.3390/met13020326
Chicago/Turabian StyleYang, Song, Jinyao Ma, Chao Chen, Caili Zhang, Junyu Ren, Zhouhua Jiang, Guangwei Fan, and Peide Han. 2023. "Effects of B and Ce Grain Boundary Segregation on Precipitates in Super Austenitic Stainless Steel" Metals 13, no. 2: 326. https://doi.org/10.3390/met13020326
APA StyleYang, S., Ma, J., Chen, C., Zhang, C., Ren, J., Jiang, Z., Fan, G., & Han, P. (2023). Effects of B and Ce Grain Boundary Segregation on Precipitates in Super Austenitic Stainless Steel. Metals, 13(2), 326. https://doi.org/10.3390/met13020326