Yield Surfaces and Plastic Potentials for Metals, with Analysis of Plastic Dilatation and Strength Asymmetry in BCC Crystals
Abstract
1. Introduction
2. Geometric Interpretation of Huber–von Mises Flow Mechanism
2.1. Tensor Representations
2.2. Atomistically Resolved Friction Coefficient
3. Generalized Huber–von Mises Criterion
4. Screw Dislocations in bcc Metals: Core Spreading and Volume Changes
4.1. Background: Dislocation Core Phenomena
4.2. Background: Volume Changes from Dislocations
4.3. Analysis: Volume Changes in bcc, fcc, and hcp Metals
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Extension to Dynamic High-Pressure Regimes
References
- Vitek, V.; Mrovec, M.; Bassani, J.L. Influence of non-glide stresses on plastic flow: From atomistic to continuum modeling. Mater. Sci. Eng. A 2004, 365, 31–37. [Google Scholar] [CrossRef]
- Bassani, L.J.; Racherla, V. From non-planar dislocation cores to non-associated plasticity and strain bursts. Prog. Mater. Sci. 2011, 56, 852–863. [Google Scholar] [CrossRef]
- Qin, Q.; Bassani, J. Non-Schmid yield behavior in single crystals. J. Mech. Phys. Solids 1992, 40, 813–833. [Google Scholar] [CrossRef]
- Qin, Q.; Bassani, J. Non-associated plastic flow in single crystals. J. Mech. Phys. Solids 1992, 40, 835–862. [Google Scholar] [CrossRef]
- Duesbery, M.S.; Vitek, V. Plastic anisotropy in B.C.C. transition metals. Acta Mater. 1998, 46, 1481–1492. [Google Scholar] [CrossRef]
- Vitek, V.; Paidar, V. Non-planar dislocation cores: A ubiquitous phenomenon affecting mechanical properties of crystalline materials. In Dislocations in Solids; Hirth, J.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 14, Chapter 87; pp. 441–514. [Google Scholar]
- Lim, H.; Hale, L.M.; Zimmerman, J.A.; Battaile, C.C.; Weinberger, C.R. A multi-scale model of dislocation plasticity in a-Fe: Incorporating temperature, strain rate and non-Schmid effects. Int. J. Plasticity 2015, 73, 100–118. [Google Scholar] [CrossRef]
- Tresca, H. Mémoire sur l’écoulement des corps solides soumis à de fortes pressions. C. R. Acad. Sci. Paris 1864, 59, 754. [Google Scholar]
- Huber, M. Specific work of strain as a measure of material effort. Czas. Tech. 1904, XXII, 22. (In Polish) [Google Scholar]
- Huber, M. Specific work of strain as a measure of material effort. Arch. Mech. 2004, 56, 173–190, (English Translation). [Google Scholar]
- Von Mises, R. Mechanik der festen Körper im plastisch deformablen Zustand. Göttin. Nachr. Math. Phys. 1913, 1, 582–592. [Google Scholar]
- Schmid, E.; Boas, W. Kristallplastizität; Springer: Berlin/Heidelberg, Germany, 1928. [Google Scholar]
- Taylor, G.I.; Elam, C.F. The distortion of iron crystals. Proc. R. Soc. A 1926, 112, 337–361. [Google Scholar]
- Hosford, W.F. A generalized isotropic yield criterion. ASME J. Appl. Mech. 1972, 39, 607–609. [Google Scholar] [CrossRef]
- Hershey, A.V. The plasticity of an isotropic aggregate of anisotropic face-centered cubic crystals. ASME J. Appl. Mech. 1954, 21, 241–249. [Google Scholar] [CrossRef]
- Taylor, G.I. Plastic strain in metals. J. Inst. Metals 1938, 62, 307–324. [Google Scholar]
- Bishop, J.F.W.; Hill, R. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Philos. Mag. 1951, 42, 414–427. [Google Scholar] [CrossRef]
- Van Houtte, P. On the equivalence of the relaxed Taylor theory and the Bishop-Hill theory for partially constrained plastic deformation of crystals. Mater. Sci. Eng. 1982, 55, 69–77. [Google Scholar] [CrossRef]
- Hill, R. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. A 1948, 193, 281–297. [Google Scholar]
- Cazacu, O.; Plunkett, B.; Barlat, F. Orthotropic yield criterion for hexagonal closed packed metals. Int. J. Plasticity 2006, 22, 1171–1194. [Google Scholar] [CrossRef]
- Plunkett, B.; Cazacu, O.; Barlat, F. Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals. Int. J. Plasticity 2008, 24, 847–866. [Google Scholar] [CrossRef]
- Zubelewicz, A. Micromechanical study of ductile polycrystalline materials. J. Mech. Phys. Solids 1993, 41, 1711–1722. [Google Scholar] [CrossRef]
- Zubelewicz, A. A mechanisms-based model for dynamic behavior and fracture of geomaterials. Int. J. Rock Mech. Mining Sci. 2014, 72, 277–282. [Google Scholar] [CrossRef]
- Zubelewicz, A. Overall stress and strain rates for crystalline and frictional materials. Int. J. Non-Linear Mechanics 1990, 25, 389–392. [Google Scholar] [CrossRef]
- Zubelewicz, A. Another perspective on elastic and plastic anisotropy of textured metals. Proc. R. Soc. A 2021, 477, 20210234. [Google Scholar] [CrossRef]
- Gröger, R.; Racherla, V.; Vitek, V. Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2<111> screw dislocations at 0 K. Acta Mater. 2008, 56, 5401–5411. [Google Scholar]
- Gröger, R.; Racherla, V.; Vitek, V. Multiscale modeling of plastic deformation of molybdenum and tungsten: II. Yield criterion for single crystals based on atomistic studies of glide 1/2<111> screw dislocations. Acta Mater. 2008, 56, 5412–5425. [Google Scholar]
- Christian, J.W. Some surprising features of the plastic deformation of body-centered cubic metals and alloys. Metall. Trans. A 1983, 14, 1237–1256. [Google Scholar] [CrossRef]
- Kraych, A.; Clouet, E.; Dezerald, L.; Ventelon, L.; Willaime, F.; Rodney, D. Non-glide effects and dislocation core fields in BCC metals. NPJ Comp. Mater. 2019, 5, 109. [Google Scholar] [CrossRef]
- Hollang, L.; Hommel, M.; Seeger, A. The flow stress of ultra-high-purity molybdenum single crystals. Phys. Stat. Solidi A 1997, 160, 329–354. [Google Scholar] [CrossRef]
- Seeger, A.; Hollang, L. The flow-stress asymmetry of ultra-pure molybdenum single crystals. Mater. Trans. 2000, 41, 141–151. [Google Scholar] [CrossRef]
- Hollang, L.; Brunner, D.; Seeger, A. Work hardening and flow stress of ultrapure molybdenum single crystals. Mater. Sci. Eng. A 2001, 319, 233–236. [Google Scholar] [CrossRef]
- Holder, J.; Granato, A.V. Thermodynamic properties of solids containing defects. Phys. Rev. 1969, 182, 729–741. [Google Scholar] [CrossRef]
- Wright, T.W. Stored energy and plastic volume change. Mech. Mater. 1982, 1, 185–187. [Google Scholar] [CrossRef]
- Spitzig, W.A.; Richmond, O. The effect of pressure on the flow stress of metals. Acta Metall. 1984, 32, 457–463. [Google Scholar] [CrossRef]
- Vitek, V. Computer simulation of the screw dislocation motion in bcc metals under the effect of the external shear and uniaxial stresses. Proc. R. Soc. A 1976, 352, 109–124. [Google Scholar]
- Ismail-Beigi, S.; Arias, T.A. Ab initio study of screw dislocations in Mo and Ta: A new picture of plasticity in bcc transition metals. Phys. Rev. Lett. 2000, 84, 1499–1503. [Google Scholar] [CrossRef] [PubMed]
- Vitek, V. Core structure of screw dislocations in body-centered cubic metals: Relation to symmetry and interatomic bonding. Philos. Mag. 2004, 84, 415–428. [Google Scholar] [CrossRef]
- Clayton, J.D. Dynamic plasticity and fracture in high density polycrystals: Constitutive modeling and numerical simulation. J. Mech. Phys. Solids 2005, 53, 261–301. [Google Scholar] [CrossRef]
- Finnis, M.W.; Sinclair, J.E. A simple empirical N-body potential for transition metals. Philos. Mag. A 1984, 50, 45–55. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.Z.; Chang, J.P.; Cai, W.; Bulatov, V.V.; Ho, K.M.; Yip, S. Core energy and Peierls stress of a screw dislocation in bcc molybdenum: A periodic-cell tight-binding study. Phys. Rev. B 2004, 70, 104113. [Google Scholar] [CrossRef]
- Teodosiu, C. Elastic Models of Crystal Defects; Springer: Berlin/Heidelberg, Germany, 1982. [Google Scholar]
- Clayton, J.D. Nonlinear Mechanics of Crystals; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Toupin, R.; Rivlin, R. Dimensional changes in crystals caused by dislocations. J. Math. Phys. 1960, 1, 8–15. [Google Scholar] [CrossRef]
- Clayton, J.D.; Bammann, D.J. Finite deformations and internal forces in elastic-plastic crystals: Interpretations from nonlinear elasticity and anharmonic lattice statics. ASME J. Eng. Mater. Tech. 2009, 131, 041201. [Google Scholar] [CrossRef]
- Clayton, J.D. Defects in nonlinear elastic crystals: Differential geometry, finite kinematics, and second-order analytical solutions. ZAMM-J. Appl. Math. Mech. 2015, 95, 476–510. [Google Scholar] [CrossRef]
- Webb, E.B.; Zimmerman, J.A.; Seel, S.C. Reconsideration of continuum thermomechanical quantities in atomic scale simulations. Math. Mech. Solids 2008, 13, 221–266. [Google Scholar] [CrossRef]
- Henager, C.H., Jr.; Hoagland, R.G. Dislocation core fields and forces in FCC metals. Scripta Mater. 2004, 50, 1091–1095. [Google Scholar] [CrossRef]
- Foreman, A.J.E. Dislocation energies in anisotropic crystals. Acta Metall. 1955, 3, 322–330. [Google Scholar] [CrossRef]
- Steeds, J.W. Introduction to Anisotropic Elasticity Theory of Dislocations; Clarendon Press: Oxford, UK, 1973. [Google Scholar]
- Seeger, A.; Haasen, P. Density changes of crystals containing dislocations. Philos. Mag. 1958, 3, 470–475. [Google Scholar] [CrossRef]
- Zener, C. Theory of lattice expansion introduced by cold work. Trans. Am. Inst. Mining Metall. Engrs. 1942, 147, 361–368. [Google Scholar]
- Sinclair, J.; Gehlen, P.; Hoagland, R.; Hirth, J. Flexible boundary conditions and nonlinear geometric effects in atomic dislocation modeling. J. Appl. Phys. 1978, 49, 3890–3897. [Google Scholar] [CrossRef]
- Clouet, E.; Ventelon, L.; Willaime, F. Dislocation core energies and core fields from first principles. Phys. Rev. Lett. 2009, 102, 055502. [Google Scholar] [CrossRef]
- Clouet, E.; Ventelon, L.; Willaime, F. Dislocation core field II. Screw Dislocation in Iron. Phys. Rev. B 2011, 84, 224107. [Google Scholar] [CrossRef]
- Kocks, U.F.; Argon, A.S.; Ashby, M.F. Thermodynamics and kinetics of slip. Prog. Mater. Sci. 1975, 19, 1–288. [Google Scholar]
- Hull, D.; Bacon, D.J. Introduction to Dislocations, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 1984. [Google Scholar]
- Ninomiya, T. Theory of melting, dislocation model. I. J. Phys. Soc. Japan 1978, 44, 263–268. [Google Scholar] [CrossRef]
- Guinan, M.W.; Steinberg, D.J. Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements. J. Phys. Chem. Solids 1974, 35, 1501–1512. [Google Scholar] [CrossRef]
- Clayton, J.D. An alternative three-term decomposition for single crystal deformation motivated by non-linear elastic dislocation solutions. Q. J. Mech. Appl. Math. 2014, 67, 127–158. [Google Scholar] [CrossRef][Green Version]
- Clayton, J.D. A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire. Proc. R. Soc. A 2009, 465, 307–334. [Google Scholar] [CrossRef]
- Clayton, J.D. Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Horie, Y. Thermodynamics of dislocations and shock compression of solids. Phys. Rev. B 1980, 21, 5549–5557. [Google Scholar] [CrossRef]
- Zubelewicz, A. Thermodynamics description of dynamic plasticity in metals. Forces Mech. 2022, 9, 100121. [Google Scholar] [CrossRef]
- Clayton, J.D. Nonlinear thermomechanics for analysis of weak shock profile data in ductile polycrystals. J. Mech. Phys. Solids 2019, 124, 714–757. [Google Scholar] [CrossRef]
- Rohatgi, A.; Vecchio, K.S.; Gray, G.T., III. A metallographic and quantitative analysis of the influence of stacking fault energy on shock-hardening in Cu and Cu–Al alloys. Acta Mater. 2001, 49, 427–438. [Google Scholar] [CrossRef]
- Bringa, E.M.; Caro, A.; Wang, Y.; Victoria, M.; McNaney, J.M.; Remington, B.A.; Smith, R.F.; Torralva, B.R.; Van Swygenhoven, H. Ultrahigh strength in nanocrystalline materials under shock loading. Science 2005, 309, 1838–1841. [Google Scholar] [CrossRef] [PubMed]
- Shehadeh, M.A.; Bringa, E.M.; Zbib, H.M.; McNaney, J.M.; Remington, B.A. Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations. Appl. Phys. Lett. 2006, 89, 171918. [Google Scholar] [CrossRef]
- Elkhodary, E.I.; Zikry, M.A. A fracture criterion for finitely deforming crystalline solids-the dynamic fracture of single crystals. J. Mech. Phys. Solids 2011, 59, 2007–2022. [Google Scholar] [CrossRef]
- Lim, H.; Carroll, J.D.; Battaile, C.C.; Chen, S.R.; APMoore, A.P.; Lane, J.D. Anisotropy and strain localization in dynamic impact experiments of tantalum single crystals. Sci. Rep. 2018, 8, 5540. [Google Scholar] [CrossRef] [PubMed]
- Vogler, T.J.; Clayton, J.D. Heterogeneous deformation and spall of an extruded tungsten alloy: Plate impact experiments and crystal plasticity modeling. J. Mech. Phys. Solids 2008, 56, 297–335. [Google Scholar] [CrossRef]
- Lloyd, J.T.; Clayton, J.D.; Becker, R.; McDowell, D.L. Simulation of shock wave propagation in single crystal and polycrystalline aluminum. Int. J. Plasticity 2014, 60, 118–144. [Google Scholar] [CrossRef]
- Hill, R. The Mathematical Theory of Plasticity; Clarendon Press: Oxford, UK, 1950. [Google Scholar]
Metal | Structure | B [GPa] | G [GPa] | ν | B’ | G’ | A | αe | αs | αexp | <111> Spreading |
---|---|---|---|---|---|---|---|---|---|---|---|
Fe | bcc | 166 | 82 | 0.29 | 5.3 | 1.8 | 2.37 | 2.13 | 1.31 | - | Yes |
Mo | bcc | 263 | 125 | 0.29 | 4.4 | 1.5 | 0.72 | 1.66 | 1.02 | - | Yes |
Ta | bcc | 193 | 69 | 0.34 | 3.2 | 1.1 | 1.56 | 1.14 | 0.74 | - | Yes |
W | bcc | 310 | 160 | 0.28 | 4.0 | 2.3 | 1.01 | 2.39 | 1.78 | - | Yes |
Al | fcc | 76 | 26 | 0.35 | 4.4 | 1.8 | 1.22 | 2.14 | 1.46 | 2.04 | No |
Ag | fcc | 103 | 30 | 0.37 | 6.1 | 1.4 | 3.03 | 1.87 | 1.11 | 1.08 | No |
Au | fcc | 173 | 28 | 0.42 | 6.3 | 1.1 | 2.88 | 1.61 | 0.94 | 1.08 | No |
Cu | fcc | 137 | 48 | 0.34 | 5.5 | 1.4 | 3.21 | 1.77 | 1.05 | 1.23–1.68 | No |
Ni | fcc | 183 | 86 | 0.30 | 6.2 | 1.4 | 2.46 | 1.86 | 0.93 | 1.74–1.78 | No |
Mg | hcp | 35 | 17 | 0.29 | 3.9 | 1.7 | 0.98 | 1.78 | 1.21 | - | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubelewicz, A.; Clayton, J.D. Yield Surfaces and Plastic Potentials for Metals, with Analysis of Plastic Dilatation and Strength Asymmetry in BCC Crystals. Metals 2023, 13, 523. https://doi.org/10.3390/met13030523
Zubelewicz A, Clayton JD. Yield Surfaces and Plastic Potentials for Metals, with Analysis of Plastic Dilatation and Strength Asymmetry in BCC Crystals. Metals. 2023; 13(3):523. https://doi.org/10.3390/met13030523
Chicago/Turabian StyleZubelewicz, Aleksander, and John D. Clayton. 2023. "Yield Surfaces and Plastic Potentials for Metals, with Analysis of Plastic Dilatation and Strength Asymmetry in BCC Crystals" Metals 13, no. 3: 523. https://doi.org/10.3390/met13030523
APA StyleZubelewicz, A., & Clayton, J. D. (2023). Yield Surfaces and Plastic Potentials for Metals, with Analysis of Plastic Dilatation and Strength Asymmetry in BCC Crystals. Metals, 13(3), 523. https://doi.org/10.3390/met13030523