Innovative Tungsten Coatings for an Application in Modern and Future Fusion Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Overspray
3.2. Porosity
3.3. Microstructure
3.4. Composition and Impurity Content
3.5. Adhesion
3.6. Thickness
4. Discussion
4.1. Overspray
4.2. Porosity
4.3. Composition
4.4. Microstructure
4.5. Adhesion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matthews, G.F.; Beurskens, M.; Brezinsek, S.; Groth, M.; Joffrin, E.; Loving, A.; Kear, M.; Mayoral, M.-L.; Neu, R.; Prior, P.; et al. JET ITER-like wall—Overview and experimental programme. Phys. Scr. 2011, T145, 14001. [Google Scholar] [CrossRef]
- Tokunaga, K.; Yoshida, N.; Noda, N.; Kubota, Y.; Inagaki, S.; Sakamoto, R.; Sogabe, T.; Plöchl, L. Behavior of plasma-sprayed tungsten coatings on CFC and graphite under high heat load. J. Nucl. Mater. 1999, 266–269, 1224–1229. [Google Scholar] [CrossRef]
- Neu, R.; Maier, H.; Gauthier, E.; Greuner, H.; Hirai, T.; Hopf, C.; Likonen, J.; Maddaluno, G.; Matthews, G.F.; Mitteau, R.; et al. Investigation of tungsten coatings on graphite and CFC. Phys. Scr. 2007, T128, 150–156. [Google Scholar] [CrossRef]
- Kang, H.-K. Thermal properties of plasma-sprayed tungsten deposits. J. Nucl. Mater. 2004, 335, 1–4. [Google Scholar] [CrossRef]
- Hirai, T.; Bekris, N.; Coad, J.P.; Grisolia, C.; Linke, J.; Maier, H.; Matthews, G.F.; Philipps, V.; Wessel, E. Failure modes of vacuum plasma spray tungsten coating created on carbon fibre composites under thermal loads. J. Nucl. Mater. 2009, 392, 40–44. [Google Scholar] [CrossRef]
- Liu, X.; Yang, L.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.; Xu, Z. Thermal response of plasma sprayed tungsten coating to high heat flux. Fusion Eng. Des. 2004, 70, 341–349. [Google Scholar] [CrossRef]
- Tamura, S.; Liu, X.; Tokunaga, K.; Tsunekawa, Y.; Okumiya, M.; Noda, N.; Yoshida, N. High-temperature properties of joint interface of VPS-tungsten coated CFC. J. Nucl. Mater. 2004, 329–333, 711–716. [Google Scholar] [CrossRef]
- Vaßen, R. (Ed.) Jülich Thermal Spray Center-A New Research and Innovation Infrastructure of Forschungszentrum Jülich; Ceramic Forum International: Baden-Baden, Germany, 2020. [Google Scholar]
- Tejero-Martin, D.; Rezvani Rad, M.; McDonald, A.; Hussain, T. Beyond Traditional Coatings: A Review on Thermal-Sprayed Functional and Smart Coatings. J. Therm. Spray Technol. 2019, 28, 598–644. [Google Scholar] [CrossRef] [Green Version]
- Rasband, W.S. ImageJ; U.S. National Institutes of Health: Bethesda, MD, USA, 2011. Available online: http://imagej.nih.gov/ij (accessed on 29 January 2023).
- Renyi, A. (Ed.) On Measures of Entropy and Information, 1st ed.; Berkeley Symposium on Mathematical Statistics and Porbability: Berkeley, CA, USA, 1961. [Google Scholar]
- Russ, J.C.; Dehoff, R.T. Practical Stereology; Springer: Boston, MA, USA, 2000; ISBN 978-1-4613-5453-6. [Google Scholar]
- Guignard, A.; Mauer, G.; Vaßen, R.; Stöver, D. Deposition and Characteristics of Submicrometer-Structured Thermal Barrier Coatings by Suspension Plasma Spraying. J. Therm. Spray Technol. 2012, 21, 416–424. [Google Scholar] [CrossRef]
- Kovářík, O.; Haušild, P.; Siegl, J.; Chráska, T.; Matějíček, J.; Pala, Z.; Boulos, M. The influence of substrate temperature on properties of APS and VPS W coatings. Surf. Coat. Technol. 2015, 268, 7–14. [Google Scholar] [CrossRef]
- Matějíček, J.; Vilémová, M.; Nevrlá, B.; Kocmanová, L.; Veverka, J.; Halasová, M.; Hadraba, H. The influence of substrate temperature and spraying distance on the properties of plasma sprayed tungsten and steel coatings deposited in a shrouding chamber. Surf. Coat. Technol. 2017, 318, 217–223. [Google Scholar] [CrossRef]
- Fukuda, M.; Hasegawa, A.; Nogami, S. Thermal properties of pure tungsten and its alloys for fusion applications. Fusion Eng. Des. 2018, 132, 1–6. [Google Scholar] [CrossRef]
- Bolt, H.; Barabash, V.; Krauss, W.; Linke, J.; Neu, R.; Suzuki, S.; Yoshida, N.; Team, A.U. Materials for the plasma-facing components of fusion reactors. J. Nucl. Mater. 2004, 329–333, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Boire-Lavigne, S.; Moreau, C.; Saint-Jacques, R.G. The relationship between the microstructure and thermal diffusivity of plasma-sprayed tungsten coatings. J. Therm. Spray Technol. 1995, 4, 261–267. [Google Scholar] [CrossRef]
- Fauchais, P. Understanding plasma spraying. J. Phys. D Appl. Phys. 2004, 37, R86–R108. [Google Scholar] [CrossRef]
- Greuner, H.; Bolt, H.; Böswirth, B.; Lindig, S.; Kühnlein, W.; Huber, T.; Sato, K.; Suzuki, S. Vacuum plasma-sprayed tungsten on EUROFER and 316L: Results of characterisation and thermal loading tests. Fusion Eng. Des. 2005, 75–79, 333–338. [Google Scholar] [CrossRef]
- Niu, Y.; Zheng, X.; Ji, H.; Qi, L.; Ding, C.; Chen, J.; Luo, G. Microstructure and thermal property of tungsten coatings prepared by vacuum plasma spraying technology. Fusion Eng. Des. 2010, 85, 1521–1526. [Google Scholar] [CrossRef]
- Shaw, L.L.; Goberman, D.; Ren, R.; Gell, M.; Jiang, S.; Wang, Y.; Xiao, T.; Strutt, P.R. The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions. Surf. Coat. Technol. 2000, 130, 1–8. [Google Scholar] [CrossRef]
- Paradis, P.-F.; Ishikawa, T.; Yoda, S. Viscosity of liquid undercooled tungsten. J. Appl. Phys. 2005, 97, 106101. [Google Scholar] [CrossRef]
- Gottstein, G. Physical Foundations of Materials Science; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 978-3-642-07271-0. [Google Scholar]
- Smirnov, R.D.; Krasheninnikov, S.I.; Pigarov, A.Y.; Rognlien, T.D. Tungsten dust impact on ITER-like plasma edge. Phys. Plasmas 2015, 22, 12506. [Google Scholar] [CrossRef]
- Dutta, B.N.; Dayal, B. Lattice Constants and Thermal Expansion of Palladium and Tungsten up to 878 °C by X-ray Method. Phys. Stat. Sol. (B) 1963, 3, 2253–2259. [Google Scholar] [CrossRef]
- Pintsuk, G.; Compan, J.; Linke, J.; Majerus, P.; Peacock, A.; Pitzer, D.; Rödig, M. Mechanical and thermo-physical characterization of the carbon fibre composite NB31. Phys. Scr. 2007, T128, 66–71. [Google Scholar] [CrossRef]
Campaign # * | Sample # * | Nozzle Diameter [mm] | Carrier Gas Flow [slpm **] | Scanning Speed [mm/s] | Spray Distance [mm] |
---|---|---|---|---|---|
1 | 1 | 7 | 1.2 | 440 | 300 |
1 | 2 | 8 | 1.2 | 440 | 300 |
1 | 3 | 7 | 1.2 | 220 | 300 |
2 | 4 | 8 | 0.9 | 440 | 300 |
2 | 5 | 8 | 0.9 | 220 | 300 |
3 | 6 | 8 | 0.9 | 220 | 275 |
3 | 7 | 8 | 0.9 | 220 | 250 |
Parameter | Value |
---|---|
Plasma gas ratio | 3.48 (sl Ar)/(sl H) |
Plasma gas flow rate | 51.5 slpm |
Powder feed rate | 215 g/min |
Process pressure | 60 mbar |
Path offset | 4 mm |
Torch power | 50 kW |
Campaign # * | Sample # * | Overspray [Vol-%] | |
---|---|---|---|
1 | 1 | Bright side | 7.4 |
Dark side | 10.6 | ||
2 | Bright side | 1.6 | |
Dark side | 6.2 | ||
3 | Bright side | 4.7 | |
Dark side | 10.4 | ||
2 | 4 | - | 2.3 |
5 | - | 2.2 | |
3 | 6 | - | 1.0 |
7 | - | 1.5 |
Sample # * | Porosity [vol-%] |
---|---|
1 | 10.3 |
2 | 9.9 |
3 | 8.6 |
4 | 4.9 |
5 | 5.2 |
6 | 3.6 |
7 | 3.5 |
Element | Weight Percent |
---|---|
Si | 0.1602 |
Pb | 0.0071 |
As | 0.0033 |
Fe | 0.0062 |
Ni | 0.0099 |
Mo | 0.0034 |
Cd | 0.0021 |
O | 0.135 |
Sample # * | Thickness [µm] |
---|---|
1 | 133 |
2 | 117 |
3 | 102 |
4 | 101 |
5 | 112 |
6 | 114 |
7 | 122 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keller, T.; Litnovsky, A.; Mauer, G.; Linsmeier, C.; Guillon, O. Innovative Tungsten Coatings for an Application in Modern and Future Fusion Devices. Metals 2023, 13, 531. https://doi.org/10.3390/met13030531
Keller T, Litnovsky A, Mauer G, Linsmeier C, Guillon O. Innovative Tungsten Coatings for an Application in Modern and Future Fusion Devices. Metals. 2023; 13(3):531. https://doi.org/10.3390/met13030531
Chicago/Turabian StyleKeller, Tom, Andrey Litnovsky, Georg Mauer, Christian Linsmeier, and Olivier Guillon. 2023. "Innovative Tungsten Coatings for an Application in Modern and Future Fusion Devices" Metals 13, no. 3: 531. https://doi.org/10.3390/met13030531
APA StyleKeller, T., Litnovsky, A., Mauer, G., Linsmeier, C., & Guillon, O. (2023). Innovative Tungsten Coatings for an Application in Modern and Future Fusion Devices. Metals, 13(3), 531. https://doi.org/10.3390/met13030531