Investigations on the Reverse Flotation of Quartz/Hematite Using Pullulan as a Novel Depressant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Minerals and Reagents
2.2. Flotation Tests
2.3. Molecular Weight Measurements
2.4. Viscosity Measurements
2.5. Contact Angle Measurements
2.6. Zeta Potential Measurements
2.7. FT-IR Measurements
2.8. XPS Measurements
3. Results and Discussion
3.1. The Characterization of Pullulan
3.1.1. FT-IR Spectroscopy
3.1.2. Molecular Weight Tests
3.1.3. Viscosity Measurement Results
3.2. Micro-Flotation Results
3.3. Contact Angle Analyses
3.4. The Adsorption Analyses
3.5. Zeta Potential Analyses
3.6. FT-IR Analyses
3.7. XPS Analyses
4. Conclusions
- The structure and molecular weight of pullulan were determined by the characterization of pullulan and it was found that the viscosity of pullulan was lower than that of starch, and pullulan was more suitable for flotation.
- The single mineral flotation tests showed that pullulan had selective depression on hematite and was slightly better than starch. The iron grade of 65.35% and iron recovery of 90.68% were obtained by pullulan as depressant in mineral mixture tests, which was slightly better than starch.
- The difference in hydrophobicity of hematite and quartz can be amplified by pre-addition of pullulan to the DOPA system to achieve their effective separation.
- Zeta potential and FT-IR analyses showed that pullulan was selectively adsorbed on hematite and prevented the adsorption of DOPA. The weak adsorption between pullulan and quartz did not affect the hydrophobic modification of the quartz surface by DOPA.
- XPS analyses showed that pullulan was adsorbed on the hematite surface through chemical bonding between its hydroxyl group and the Fe site on the hematite surface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Filippov, L.; Severov, V.; Filippova, I. An overview of the beneficiation of iron ores via reverse cationic flotation. Int. J. Miner. Process. 2014, 127, 62–69. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Hu, Y.; Gao, X.; Yuan, Q.; Zhao, F. Investigation of the specularite/chlorite separation using chitosan as a novel depressant by direct flotation. Carbohydr. Polym. 2020, 240, 116334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xu, Z.; Hu, Y.; He, J.; Tian, M.; Zhou, J.; Chen, S.; Sun, W. Novel Insights into the Hydroxylation Behaviors of α-Quartz (101) Surface and its Effects on the Adsorption of Sodium Oleate. Minerals 2019, 9, 450. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhu, Y.; Xie, Y.; Shang, Y.; Zheng, G. A novel macromolecular depressant for reverse flotation: Synthesis and depressing mechanism in the separation of hematite and quartz. Sep. Purif. Technol. 2017, 186, 175–181. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Yang, S.; Liu, C.; Xu, Y. Investigations on the reverse flotation of quartz from hematite using carboxymethyl chitosan as a depressant. Powder Technol. 2021, 393, 109–115. [Google Scholar] [CrossRef]
- Han, W.; Zhu, Y.; Ge, W.; Liu, J.; Li, Y. Curdlan as a new depressant of hematite for quartz-hematite reverse flotation separation. Miner. Eng. 2022, 185, 107708. [Google Scholar] [CrossRef]
- Yehia, A.; El-Halim, S.A.; Sharada, H.; Fadel, M.; Ammar, M. Application of a fungal cellulase as a green depressant of hematite in the reverse anionic flotation of a high-phosphorus iron ore. Miner. Eng. 2021, 167, 106903. [Google Scholar] [CrossRef]
- Liu, Q.; Wannas, D.; Peng, Y. Exploiting the dual functions of polymer depressants in fine particle flotation. Int. J. Miner. Process. 2006, 80, 244–254. [Google Scholar] [CrossRef]
- Turrer, H.; Peres, A. Investigation on alternative depressants for iron ore flotation. Miner. Eng. 2010, 23, 1066–1069. [Google Scholar] [CrossRef]
- Tohry, A.; Dehghan, R.; Zarei, M.; Chelgani, S.C. Mechanism of humic acid adsorption as a flotation separation depressant on the complex silicates and hematite. Miner. Eng. 2020, 162, 106736. [Google Scholar] [CrossRef]
- Han, W.; Zhu, Y.; Liu, J.; Li, Y. A novel depressant HPAM of the hematite in reverse cationic flotation of iron ore. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128547. [Google Scholar] [CrossRef]
- Krawczyk, H.; Arkell, A.; Jönsson, A.-S. Membrane performance during ultrafiltration of a high-viscosity solution containing hemicelluloses from wheat bran. Sep. Purif. Technol. 2011, 83, 144–150. [Google Scholar] [CrossRef]
- Alhomodi, A.F.; Gibbons, W.R.; Karki, B. Estimation of cellulase production by Aureobasidium pullulans, Neurospora crassa, and Trichoderma reesei during solid and submerged state fermentation of raw and processed canola meal. Bioresour. Technol. Rep. 2022, 18, 101063. [Google Scholar] [CrossRef]
- Haghighatpanah, N.; Khodaiyan, F.; Kennedy, J.F.; Hosseini, S.S. Optimization and characterization of pullulan obtained from corn bran hydrolysates by Aerobasidiom pullulan KY767024. Biocatal. Agric. Biotechnol. 2021, 33, 101959. [Google Scholar] [CrossRef]
- Cui, Y.; Jiao, F.; Qin, W.; Wang, C.; Li, X. Flotation separation of sphalerite from galena using eco-friendly and efficient depressant pullulan. Sep. Purif. Technol. 2022, 295, 121013. [Google Scholar] [CrossRef]
- Ning, S.; Li, G.; Shen, P.; Zhang, X.; Li, J.; Liu, R.; Liu, D. Selective separation of chalcopyrite and talc using pullulan as a new depressant. Colloids Surf. A Physicochem. Eng. Asp. 2021, 623, 126764. [Google Scholar] [CrossRef]
- Singh, R.S.; Saini, G.K.; Kennedy, J.F. Downstream processing and characterization of pullulan from a novel colour variant strain of Aureobasidium pullulans FB-1. Carbohydr. Polym. 2009, 78, 89–94. [Google Scholar] [CrossRef]
- Pielesz, A.; Biniaś, W.; Paluch, J. Mild acid hydrolysis of fucoidan: Characterization by electrophoresis and FT-Raman spectroscopy. Carbohydr. Res. 2011, 346, 1937–1944. [Google Scholar] [CrossRef]
- Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M.Z.; Majzner, K.; Kochan, K.; Kaczor, A.; Baranska, M.; Malek, K. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 185, 317–335. [Google Scholar] [CrossRef]
- Kacuráková, M.; Capek, P.; Sasinková, V.; Wellner, N.; Ebringerová, A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Bai, W.; Shah, F.; Wang, Q.; Liu, H. Dissolution, regeneration and characterization of curdlan in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Int. J. Biol. Macromol. 2019, 130, 922–927. [Google Scholar] [CrossRef] [PubMed]
- McFadzean, B.; Groenmeyer, G. Selective molecular weight adsorption from polydisperse polysaccharide depressants. Miner. Eng. 2015, 77, 172–178. [Google Scholar] [CrossRef]
- McFadzean, B.; Dicks, P.; Groenmeyer, G.; Harris, P.; O’Connor, C. The effect of molecular weight on the adsorption and efficacy of polysaccharide depressants. Miner. Eng. 2011, 24, 463–469. [Google Scholar] [CrossRef]
- Iwasaki, I.; Cooke, S.; Colombo, A.F. Flotation characteristics of goethite. In Flotation Characteristics of Goethite; U.S. Department of the Interior, Bureau of Mines: Washington, DC, USA, 1960. [Google Scholar]
- Smith, R.W.; Scott, J.L. Mechanisms of Dodecylamine Flotation of Quartz. Miner. Process. Extr. Met. Rev. 1990, 7, 81–94. [Google Scholar] [CrossRef]
- Hao, H.; Li, L.; Yuan, Z.; Patra, P.; Somasundaran, P. Adsorption differences of sodium oleate on siderite and hematite. Miner. Eng. 2019, 137, 10–18. [Google Scholar] [CrossRef]
- Wang, C.; Liu, R.; Wu, M.; Zhai, Q.; Luo, Y.; Jing, N.; Xie, F.; Sun, W. Selective separation of chalcopyrite from sphalerite with a novel depressant fenugreek gum: Flotation and adsorption mechanism. Miner. Eng. 2022, 184, 107653. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, Z.; Zhang, Y.; Sun, W.; Gao, Z.; Lei, M. Effect of Artemisia sphaerocephala Krasch. Gum on the flotation separation of fluorite from calcite. Miner. Eng. 2021, 174, 107249. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, Z.; Tang, X.; Sun, W.; Gao, Z.; Luo, X. Enhancing flotation separation effect of fluorite and calcite with polysaccharide depressant tamarind seed gum. Colloids Surf. A Physicochem. Eng. Asp. 2021, 624, 126784. [Google Scholar] [CrossRef]
- Tohry, A.; Dehghan, R.; Filho, L.D.S.L.; Chelgani, S.C. Tannin: An eco-friendly depressant for the green flotation separation of hematite from quartz. Miner. Eng. 2021, 168, 106917. [Google Scholar] [CrossRef]
- Espiritu, E.R.L.; Naseri, S.; Waters, K.E. Surface chemistry and flotation behavior of dolomite, monazite and bastnäsite in the presence of benzohydroxamate, sodium oleate and phosphoric acid ester collectors. Colloids Surf. A Physicochem. Eng. Asp. 2018, 546, 254–265. [Google Scholar] [CrossRef]
- Kumar, D.; Jain, V.; Rai, B. Can carboxymethyl cellulose be used as a selective flocculant for beneficiating alumina-rich iron ore slimes? A density functional theory and experimental study. Miner. Eng. 2018, 121, 47–54. [Google Scholar] [CrossRef]
- Cheng, K.; Wu, X.; Tang, H.; Zeng, Y. The flotation of fine hematite by selective flocculation using sodium polyacrylate. Miner. Eng. 2021, 176, 107273. [Google Scholar] [CrossRef]
- Moreira, G.F.; Peçanha, E.R.; Monte, M.B.; Filho, L.S.L.; Stavale, F. XPS study on the mechanism of starch-hematite surface chemical complexation. Miner. Eng. 2017, 110, 96–103. [Google Scholar] [CrossRef]
- Hacha, R.R.; LeonardoTorem, M.; Merma, A.G.; Coelho, V.F.D.S. Electroflotation of fine hematite particles with Rhodococcus opacus as a biocollector in a modified Partridge–Smith cell. Miner. Eng. 2018, 126, 105–115. [Google Scholar] [CrossRef]
- Li, L.; Zhang, C.; Yuan, Z.; Xu, X.; Song, Z. AFM and DFT study of depression of hematite in oleate-starch-hematite flotation system. Appl. Surf. Sci. 2019, 480, 749–758. [Google Scholar] [CrossRef]
Test System | No Reagents | DOPA | Pullulan + DOPA |
---|---|---|---|
Hematite | 29.8 | 85.7 | 52.1 |
Quartz | 31.2 | 91.6 | 89.4 |
Samples | Elements/at.% | Sum/% | |||
---|---|---|---|---|---|
C | O | Fe | Si | ||
Hematite | 39.44 | 47.70 | 12.86 | -- | 100 |
Hematite + pullulan | 45.64 | 46.66 | 7.70 | -- | 100 |
Shift | +6.20 | −1.04 | −5.16 | -- | |
Quartz | 23.55 | 50.56 | -- | 25.89 | 100 |
Quartz + pullulan | 24.01 | 50.78 | -- | 25.21 | 100 |
Shift | +0.46 | −0.22 | -- | −0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, W.; Zhu, Y.; Shuai, Z.; Liu, J.; Li, Y. Investigations on the Reverse Flotation of Quartz/Hematite Using Pullulan as a Novel Depressant. Metals 2023, 13, 550. https://doi.org/10.3390/met13030550
Han W, Zhu Y, Shuai Z, Liu J, Li Y. Investigations on the Reverse Flotation of Quartz/Hematite Using Pullulan as a Novel Depressant. Metals. 2023; 13(3):550. https://doi.org/10.3390/met13030550
Chicago/Turabian StyleHan, Wenjie, Yimin Zhu, Zhichao Shuai, Jie Liu, and Yanjun Li. 2023. "Investigations on the Reverse Flotation of Quartz/Hematite Using Pullulan as a Novel Depressant" Metals 13, no. 3: 550. https://doi.org/10.3390/met13030550
APA StyleHan, W., Zhu, Y., Shuai, Z., Liu, J., & Li, Y. (2023). Investigations on the Reverse Flotation of Quartz/Hematite Using Pullulan as a Novel Depressant. Metals, 13(3), 550. https://doi.org/10.3390/met13030550