Transition in Interfacial Failure Mechanism of Resistance Spot Welds during Tensile–Shear Loading: Role of Fusion Zone Hardness
Abstract
:1. Introduction
- (i)
- Ductile shear failure: interfacial failure occurs when the induced shear stress at the sheet/sheet interface exceeds the ultimate shear strength of the FZ (). Under such circumstances, the failure load in IF mode can be expressed as Equation (1):
- (ii)
- Rapid crack propagation: interfacial failure occurs when stress intensity factor KI at the notch tip reaches the critical stress intensity factor KC or fracture toughness of the FZ. Under such circumstances, Equation (3) can be applied to estimate the failure load in IF mode.
2. Materials and Methods
2.1. Materials
2.2. Resistance Spot Welding Procedure
2.3. Ex Situ Tempering Heat Treatment
2.4. Microstructure and Micro-Hardness Characterization
2.5. Mechanical Testing and Post-Failure Analysis
3. Results and Discussion
3.1. Microstructure and Hardness Characteristics
3.2. The Tensile–Shear Properties
3.3. Fracture Surface Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
AHSS | Advanced high-strength steel |
RSW | Resistance spot welding |
FZ | Fusion zone |
HAZ | Heat affected zone |
UCHAZ | Upper-critical heat-affected zone |
ICHAZ | Inter-critical heat-affected zone |
SCHAZ | Sub-critical heat-affected zone |
BM | Base metal |
LME | Liquid metal embrittlement |
IF | Interfacial failure |
AW | As weld condition |
PT | Post-weld tempered condition |
TME | Tempered martensite embrittlement |
TE | Temper embrittlement |
AISI | American Iron and Steel Institute |
IF | Interstitial Free steel |
LCS | Low carbon steel |
HSLA | High strength low alloy steel |
DP | Dual-phase steel |
CP | Complex phase steel |
TRIP | Transformation-induced plasticity steel |
ASS | Austenitic stainless steel |
Q&P | Quench and partitioning steel |
Interfacial failure load (N) | |
Ultimate shear strength of the fusion zone (MPa) | |
Hardness of the fusion zone (HV) | |
Fracture toughness of the fusion zone (MPa.m0.5) | |
D | Nugget diameter (mm) |
t | Sheet thickness (mm) |
Pmax | Peak load (N) |
Wmax | Failure energy (J) |
References
- Czerwinski, F. Current Trends in Automotive Lightweighting Strategies and Materials. Materials 2021, 14, 6631. [Google Scholar] [CrossRef]
- Tisza, M. Three Generations of Advanced High Strength Steels in the Automotive Industry. In Vehicle and Automotive Engineering 3; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2021; Volume 22, pp. 81–94. [Google Scholar] [CrossRef]
- Gupta, M.K.; Singhal, V. Review on Materials for Making Lightweight Vehicles. Mater. Today Proc. 2022, 56, 868–872. [Google Scholar] [CrossRef]
- De Moor, E. Advanced High-Strength Sheet Steels for Automotive Applications. In High-Performance Ferrous Alloys; Springer: Cham, Swizerland, 2021; pp. 113–151. [Google Scholar]
- Tisza, M. Development of Lightweight Steels for Automotive Applications. In Engineering Steels and High Entropy-Alloys; IntechOpen: London, UK, 2020. [Google Scholar]
- Soomro, I.A.; Pedapati, S.R.; Awang, M. A Review of Advances in Resistance Spot Welding of Automotive Sheet Steels: Emerging Methods to Improve Joint Mechanical Performance. Int. J. Adv. Manuf. Technol. 2022, 118, 1335–1366. [Google Scholar] [CrossRef]
- Pouranvari, M.; Asgari, H.R.; Mosavizadch, S.M.; Marashi, P.H.; Goodarzi, M. Effect of Weld Nugget Size on Overload Failure Mode of Resistance Spot Welds. Sci. Technol. Weld. Join. 2007, 12, 217–225. [Google Scholar] [CrossRef]
- Pouranvari, M.; Marashi, S.P.H. Critical Review of Automotive Steels Spot Welding: Process, Structure and Properties. Sci. Technol. Weld. Join. 2013, 18, 361–403. [Google Scholar] [CrossRef]
- Den Uijl, N.; Okada, T.; Moolevliet, T.; Mennes, A.; Van Der Aa, E.; Uchihara, M.; Smith, S.; Nishibata, H.; Van Der Veldt, T.; Fukui, K. Performance of Resistance Spot-Welded Joints in Advanced High-Strength Steel in Static and Dynamic Tensile Tests. Weld. World 2012, 56, 51–63. [Google Scholar] [CrossRef]
- Wei, S.; Li, Y.; Lu, S. Similar and Dissimilar Resistance Spot Weldability of Q&P980 and TWIP1180 Steels. Sci. Technol. Weld. Join. 2022, 27, 77–83. [Google Scholar]
- Akulwar, S.; Akela, A.; Satish Kumar, D.; Ranjan, M. Resistance Spot Welding Behavior of Automotive Steels. Trans. Indian Inst. Met. 2021, 74, 601–609. [Google Scholar] [CrossRef]
- Pouranvari, M.; Marashi, S.P.H. Key Factors Influencing Mechanical Performance of Dual Phase Steel Resistance Spot Welds. Sci. Technol. Weld. Join. 2010, 15, 149–155. [Google Scholar] [CrossRef]
- Chuko, W.L.; Gould, J.E. Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels. Weld. J. 2002, 81, 1–7. [Google Scholar]
- Pouranvari, M.; Marashi, S.P.H.; Safanama, D.S. Failure Mode Transition in AHSS Resistance Spot Welds. Part II: Experimental Investigation and Model Validation. Mater. Sci. Eng. A 2011, 528, 8344–8352. [Google Scholar] [CrossRef]
- Zhang, S.; DiGiovanni, C.; He, L.; Zhou, N.Y. Weld Hardness Ratio and Liquid Metal Embrittlement Crack’s Detrimental Effect on Resistant Spot Weld Strength. Sci. Technol. Weld. Join. 2021, 26, 58–67. [Google Scholar] [CrossRef]
- Pouranvari, M. Susceptibility to Interfacial Failure Mode in Similar and Dissimilar Resistance Spot Welds of DP600 Dual Phase Steel and Low Carbon Steel during Cross-Tension and Tensile-Shear Loading Conditions. Mater. Sci. Eng. A 2012, 546, 129–138. [Google Scholar] [CrossRef]
- Pouranvari, M.; Marashi, S.P.H. Failure Mode Transition in AHSS Resistance Spot Welds. Part I. Controlling Factors. Mater. Sci. Eng. A 2011, 528, 8337–8343. [Google Scholar] [CrossRef]
- Pouranvari, M. Understanding the Factors Controlling the Interfacial Failure Strength of Advanced High-Strength Steel Resistance Spot Welds: Hardness vs. Fracture Toughness. Sci. Technol. Weld. Join. 2018, 23, 520–526. [Google Scholar] [CrossRef]
- Horn, R.M.; Ritchie, R.O. Mechanisms of Tempered Martensite Embrittlement in Low Alloy Steels. Metall. Trans. A 1978, 9, 1039–1053. [Google Scholar] [CrossRef]
- Peters, J.A.; Bee, J.V.; Kolk, B.; Garrett, G.G. On the Mechanisms of Tempered Martensite Embrittlement. Acta Metall. 1989, 37, 675–686. [Google Scholar] [CrossRef]
- Euser, V.K.; Williamson, D.L.; Findley, K.O.; Clarke, A.J.; Speer, J.G. The Role of Retained Austenite in Tempered Martensite Embrittlement of 4340 and 300-M Steels Investigated through Rapid Tempering. Metals 2021, 11, 1349. [Google Scholar] [CrossRef]
- Zia-Ebrahimi, F.; Krauss, G. Mechanisms of Tempered Martensite Embrittlement in Medium-Carbon Steels. Acta Metall. 1984, 32, 1767–1778. [Google Scholar] [CrossRef]
- Costa, J.E.; Thompson, A.W. Effect of Hydrogen on Fracture Behavior of a Quenched and Tempered Medium-Carbon Steel. Metall. Trans. A 1981, 12, 761–771. [Google Scholar] [CrossRef]
- Clarke, A.J.; Klemm-Toole, J.; Clarke, K.D.; Coughlin, D.R.; Pierce, D.T.; Euser, V.K.; Poplawsky, J.D.; Clausen, B.; Brown, D.; Almer, J.; et al. Perspectives on Quenching and Tempering 4340 Steel. Metall. Mater. Trans. A 2020, 51, 4984–5005. [Google Scholar] [CrossRef]
- Kong, J.P.; Han, T.K.; Chin, K.G.; Park, B.G.; Kang, C.Y. Effect of Boron Content and Welding Current on the Mechanical Properties of Electrical Resistance Spot Welds in Complex-Phase Steels. Mater. Des. 2014, 54, 598–609. [Google Scholar] [CrossRef]
- Park, S.-S.; Choi, Y.-M.; Nam, D.-G.; Kim, Y.-S.; Yu, J.-H.; Park, Y.-D. Evaluation of Resistance Spot Weld Interfacial Fractures in Tensile-Shear Tests of TRIP 1180 Steels. J. Weld. Join. 2008, 26, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Oikawa, H.; Murayama, G.; Hiwatashi, S.; Matsuyama, K. Resistance Spot Weldability of High Strength Steel Sheets for Automobiles and the Quality Assurance of Joints. Weld. World 2007, 51, 7–18. [Google Scholar] [CrossRef]
- Marashi, P.; Pouranvari, M.; Sanaee, S.M.H.; Abedi, A.; Abootalebi, S.H.; Goodarzi, M. Relationship between Failure Behaviour and Weld Fusion Zone Attributes of Austenitic Stainless Steel Resistance Spot Welds. Mater. Sci. Technol. 2008, 24, 1506–1512. [Google Scholar] [CrossRef]
- Shojaee, M.; Midawi, A.R.H.; Barber, B.; Ghassemi-armaki, H.; Worswick, M.; Biro, E. Mechanical Properties and Failure Behavior of Resistance Spot Welded Third-Generation Advanced High Strength Steels. J. Manuf. Process. 2021, 65, 364–372. [Google Scholar] [CrossRef]
- Chen, T.; Ling, Z.; Wang, M.; Kong, L. Effect of a Slightly Concave Electrode on Resistance Spot Welding of Q&P1180 Steel. J. Mater. Process. Technol. 2020, 285, 116797. [Google Scholar] [CrossRef]
- Nadimi, N.; Yadegari, R.; Pouranvari, M. Resistance Spot Welding of Quenching and Partitioning (Q&P) Third-Generation Advanced High-Strength Steel: Process—Microstructure—Performance. Metall. Mater. Trans. A 2023, 54, 577–589. [Google Scholar]
- Ghassemi-Armaki, H.; Bhat, S.; Kelley, S.; Sadagopan, S. Quasi-Static Spot Weld Strength of Advanced High-Strength Sheet Steels. Weld. J. 2017, 96, 104–112. [Google Scholar]
- Rao, S.S.; Chhibber, R.; Arora, K.S.; Shome, M. Resistance Spot Welding of Galvannealed High Strength Interstitial Free Steel. J. Mater. Process. Technol. 2017, 246, 252–261. [Google Scholar] [CrossRef]
- Burgmann, P.; Cobb, S.; Davis, J.; Miller, M.; Smith, M.; Findley, K.O.; Liu, S. Weldability, Processing, Microstructure and Mechanical Behavior Relationships in Advanced High-Strength Steel. Iron Steel Technol. 2010, 7, 76–85. [Google Scholar]
- Pouranvari, M. On the Failure Mode of Resistance Spot Welded HSLA 420 Steel. Arch. Metall. Mater. 2013, 58, 67–72. [Google Scholar] [CrossRef]
- Jaber, H.L.; Pouranvari, M.; Salim, R.K.; Hashim, F.A.; Marashi, S.P.H. Peak Load and Energy Absorption of DP600 Advanced Steel Resistance Spot Welds. Ironmak. Steelmak. 2017, 44, 699–706. [Google Scholar] [CrossRef]
- Baltazar Hernandez, V.H. Effects of Martensite Tempering on HAZ-Softening and Tensile Properties of Resistance Spot Welded Dual-Phase Steels. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2010. [Google Scholar]
- Hernandez, B.V.H.; Kuntz, M.L.; Khan, M.I.; Zhou, Y. Influence of Microstructure and Weld Size on the Mechanical Behaviour of Dissimilar AHSS Resistance Spot Welds. Sci. Technol. Weld. Join. 2008, 13, 769–776. [Google Scholar] [CrossRef]
- Krauss, G. Deformation and Fracture in Martensitic Carbon Steels Tempered at Low Temperatures. Metall. Mater. Trans. B 2001, 32, 205–221. [Google Scholar] [CrossRef]
- Krauss, G. Heat Treated Martensitic Steels: Microstructural Systems for Advanced Manufacture. ISIJ Int. 1995, 35, 349–359. [Google Scholar] [CrossRef]
- De Campos Franceschini Canale, L.; Mesquita, R.A.; Totten, G.E. Failure Analysis of Heat Treated Steel Components; ASM International: Almere, The Netherlands, 2008; ISBN 9780871708687. [Google Scholar]
Chemical Composition (%wt.) | Mechanical Properties | ||||||||
---|---|---|---|---|---|---|---|---|---|
C | Mn | Si | Cr | Ni | P | S | YS (MPa) | UTS (MPa) | EL (%) |
0.4 | 0.54 | 0.27 | 0.09 | 0.064 | 0.004 | 0.002 | 350 | 575 | 29 |
Electrode Force (kN) | Pre Squeeze Time (ms) | Squeeze Time (ms) | Weld Current (kA) | Weld Time (ms) | Hold Time (ms) |
---|---|---|---|---|---|
5.5 | 600 | 800 | 9 | 400 | 200 |
Specimen Code | Tempering Temp (°C) | Tempering Time (min) | Salt Composition |
---|---|---|---|
AW | - | - | - |
PT1 PT2 PT3 PT4 PT5 | 250 300 350 400 450 | 15 | KNO3-NaNO3 (54–46 mol.%) |
PT6 PT7 | 500 550 | 15 | KNO3 |
PT8 PT9 | 600 650 | 15 | NaCl-CaCl2 (52–48 mol.%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadimi, N.; Pouranvari, M. Transition in Interfacial Failure Mechanism of Resistance Spot Welds during Tensile–Shear Loading: Role of Fusion Zone Hardness. Metals 2023, 13, 1076. https://doi.org/10.3390/met13061076
Nadimi N, Pouranvari M. Transition in Interfacial Failure Mechanism of Resistance Spot Welds during Tensile–Shear Loading: Role of Fusion Zone Hardness. Metals. 2023; 13(6):1076. https://doi.org/10.3390/met13061076
Chicago/Turabian StyleNadimi, Nima, and Majid Pouranvari. 2023. "Transition in Interfacial Failure Mechanism of Resistance Spot Welds during Tensile–Shear Loading: Role of Fusion Zone Hardness" Metals 13, no. 6: 1076. https://doi.org/10.3390/met13061076
APA StyleNadimi, N., & Pouranvari, M. (2023). Transition in Interfacial Failure Mechanism of Resistance Spot Welds during Tensile–Shear Loading: Role of Fusion Zone Hardness. Metals, 13(6), 1076. https://doi.org/10.3390/met13061076