Increasing the Efficiency of Synthetic Iron Production by the Use of New Kit Lining
Abstract
:1. Introduction
2. Problem
3. Materials and Methods
- Drying of the quartzite in an oven, with the bottom rolled out at a temperature of 200 °C within 20 h.
- Mixing of all components in the grinding machine (Mod. 12221) for 1 h.
- Packing and sintering of the lining according to the existing technology.
- Kiln exposure at 1550–1600 °C for 2 h.
- Discharge of the first 5 melts with a volume not exceeding 0.3 of the volume of the furnace crucible.
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Levkina, O.Y. Model of Effective Management of Foundry Production of Aircraft Construction Enterprise. Izv. Samara Sci. Cent. Russ. Acad. Sci. 2012, 14, 454–462. [Google Scholar]
- Weinberg, A.M. Induction Melting Furnaces: Educational Manual for Universities; Energy: Moscow, Russia, 1967; p. 208. [Google Scholar]
- Brockmeier, K. Induction Melting Furnaces; Energy: Moscow, Russia, 1972; p. 304. [Google Scholar]
- Nelyub, V.A.; Fedorov, S.Y.; Malysheva, G.V.; Berlin, A.A. Properties of Carbon Fibers after Applying Metal Coatings on Them by Magnetron Sputtering Technology. Fibre Chem. 2021, 53, 252–257. [Google Scholar] [CrossRef]
- Dibrov, I. State and prospects development of foundry production in Russia. Foundry Prod. Metall. 2021, 6, 6–11. [Google Scholar]
- Tursunov, N.K.; Alimukhamedov, S.P.; Toirov, T.U. Development of effective technology for producing synthetic cast iron in the induction tiger furnace. Univers. Tech. Sci. 2022, 6, 30–33. [Google Scholar]
- Kukartsev, V.A.; Cherepanov, A.I.; Kukartsev, V.V.; Tynchenko, V.S.; Bukhtoyarov, V.V.; Popov, A.M.; Sergienko, R.B.; Tynchenko, S.V. X-Ray Diffraction Phase Analysis of Changes in the Lattice of Pervouralsk Quartzite upon Heating. Minerals 2022, 12, 233. [Google Scholar] [CrossRef]
- Futas, P.; Pribulova, A.; Petrik, J.; Blasko, P.; Junakova, A.; Sabik, V. Metallurgical Quality of Cast Iron Made from Steel Scrap and Possibilities of Its Improvement. Metals 2022, 13, 27. [Google Scholar] [CrossRef]
- Riposan, I.; Chisamera, M.; Stan, S. Enhanced Quality in Electric Melt Grey Cast Irons. ISIJ Int. 2013, 53, 1683–1695. [Google Scholar] [CrossRef] [Green Version]
- Tynchenko, V.S.; Kurashkin, S.O.; Tynchenko, V.V.; Bukhtoyarov, V.V.; Kukartsev, V.V.; Sergienko, R.B.; Bashmur, K.A. Mathematical modeling of induction heating of waveguide path assemblies during induction soldering. Metals 2021, 11, 697. [Google Scholar] [CrossRef]
- Kukartsev, V.A.; Cherepanov, A.I.; Kukartsev, V.V.; Tynchenko, V.S.; Kurashkin, S.O.; Tynchenko, V.V.; Sergienko, R.B.; Bashmur, K.A.; Boyko, A.A.; Bukhtoyarov, V.V. Influence of Moisture in Quartzite on the Lining Properties and Efficiency of Industrial-Frequency Induction Crucible Furnaces. Metals 2022, 12, 1515. [Google Scholar] [CrossRef]
- Kukartsev, V.A. Smelting of cast iron and steel in industrial frequency induction tiger furnaces. Steel 2016, 5, 26–28. [Google Scholar]
- Kukartsev, V.A.; Cherepanov, A.I.; Kukartsev, V.V.; Tynchenko, V.S.; Kurashkin, S.O.; Sergienko, R.B.; Tynchenko, V.V.; Bashmur, K.A. Efficiency of Foundry Production by Changing the Technology of Pretreatment with Quartzite. Metals 2022, 12, 1266. [Google Scholar] [CrossRef]
- Shumihin, V.S.; Luzan, P.P.; Zhelnis, M.V. Synthetic Cast Iron; Scientific Thought: Kiev, Ukraine, 1971; p. 159. [Google Scholar]
- Futáš, P.; Pribulová, A.; Fedorko, G.; Molnár, V. Influence of steel scrap in the charge on the properties of gray cast iron. ISIJ Int. 2017, 57, 374–379. [Google Scholar] [CrossRef] [Green Version]
- Edalati, K.; Akhlaghi, F.; Nili-Ahmadabad, M. Influence of SiC and FeSi Addition on the Characteristics of Gray Cast Iron Melts Poured at Different Temperatures. J. Mater. Process. Technol. 2005, 160, 183–187. [Google Scholar] [CrossRef]
- Weiss, E.; Fedorko, G.; Futáš, P.; Pribulová, A.; Vasková, I. Dependence of Quality Properties for Grey Iron on Used Raw Materials. Metalurgija 2009, 48, 43–45. [Google Scholar]
- Futas, P.; Pribulova, A.; Petrik, J.; Pokusova, M.; Junakova, A. The Study of Synthetic Cast Iron Quality Made from Steel Scrap. In Proceedings of the International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management (SGEM), Albena, Bulgaria, 2–8 July 2018. [Google Scholar]
- Krupennikov, S.A.; Filimonov, Y.P. Melting of steel scrap in hot metal. Steel Transl. 2007, 37, 217–219. [Google Scholar] [CrossRef]
- Janerka, K.; Jezierski, J.; Szajnar, J.; Bartocha, D. Analysis of ductile iron production on steel scrap base. Int. J. Cast Met. Res. 2014, 27, 230–234. [Google Scholar] [CrossRef]
- Druzhevsky, M.A.; Pokorni, P. Lining of induction melting furnaces with quartzite-based materials. Refract. Tech. Ceram. 2008, 10, 42–46. [Google Scholar]
- Kukartsev, V.A.; Kukartsev, V.V.; Tynchenko, V.S. Cast Iron and Steel Smelting in Induction Crucible Furnaces of Industrial Frequency. Solid State Phenom. 2020, 299, 530–534. [Google Scholar] [CrossRef]
- Kaibicheva, M.N. Properties of Quartzite Masses Used for the Lining of High-Capacity Induction Furnaces. Refractories 1971, 4, 31–34. [Google Scholar]
- Sassa, V.S. Configuration of Induction Melting Furnaces and Mixers; Energoatomizdat: Moscow, Russia, 1983; p. 120. [Google Scholar]
- Wanl, F.M.; Gnru, R.E.; Gn’ll, R.B. Phase Transformations in Silica as Examined by Continuous X-Ray Diffraction. Am. Miner. 1961, 46, 206. [Google Scholar]
- Golubtsov, V.A. About the Situation in the Domestic Foundry Production. Foundry 2011, 3, 2–3. [Google Scholar]
- Trophimov, M.G. Induction Furnace Lining; Metallurgy: Moscow, Russia, 1968; p. 288. [Google Scholar]
- Zuno-Silva, J.; Bedolla-Jacuinde, A.; Martínez-Vázquez, J.M.; Pérez-Perez, A.; Quintero-Azuara, T. Laboratory-level study of atypical degradation in a SiO2 type refractory used in induction furnaces. Nova Sci. 2014, 6, 113. [Google Scholar] [CrossRef] [Green Version]
- Platonov, B.P.; Akimenko, A.D.; Bagutskaya, S.M. Induction Furnaces for Casting Iron Smelting; Mechanical Engineering: Moscow, Russia, 1976; p. 174. [Google Scholar]
- Fenner, C.N. The Various Forms of Silica and Their Mutual Relations. Jorn. Wasn. Acad. Sei. 1912, 2, 471–480. [Google Scholar]
- Tgoupson, A.B.; Wennemer, M. Heat Capacities and Inversions in Tridymite, Cristobalite, and Tridymite-Cristobalite Mixedphases. Am. Miner. 1979, 64, 1013–1026. [Google Scholar]
- Wenk, H.-R.; Barton, N.; Bortolotti, M.; Vogel, S.C.; Voltolini, M.; Lloyd, G.E.; Gonzalez, G.B. Dauphiné Twinning and Texture Memory in Polycrystalline Quartz. Part 3: Texture Memory during Phase Transformation. Phys. Chem. Miner. 2009, 36, 567–583. [Google Scholar] [CrossRef] [Green Version]
- Ringdalen, E. Changes in Quartz During Heating and the Possible Effects on Si Production. JOM 2015, 67, 484–492. [Google Scholar] [CrossRef] [Green Version]
- Kukartsev, V.A.; Kukartsev, V.V.; Kukartsev, A.V. Effect of the Temperature Treatment of Quartzite on the Lining Resistance of Commercial-Frequency Induction Crucible Furnaces. Refract. Ind. Ceram. 2018, 59, 252–256. [Google Scholar] [CrossRef]
- Kukartsev, V.A.; Trunova, A.I.; Kukartsev, A.V. Thermal Analysis of Quartzite Used to Line a Crucible-Equipped Industrial-Frequency Induction Furnace. Refract. Ind. Ceram. 2014, 55, 220–222. [Google Scholar] [CrossRef]
- Kukartsev, V.A.; Kukartsev, V.V.; Tynchenko, V.S.; Bukhtoyarov, V.V.; Tynchenko, V.V.; Sergienko, R.B.; Bashmur, K.A.; Lysyannikov, A.V. The Technology of Using Liquid Glass Mixture Waste for Reducing the Harmful Environmental Impact. Materials 2022, 15, 1220. [Google Scholar] [CrossRef]
- Kukartsev, V.A.; Kukartsev, V.V.; Tynchenko, V.S.; Kurashkin, S.O.; Sergienko, R.B.; Tynchenko, S.V.; Panfilov, I.A.; Eremeeva, S.V.; Panfilova, T.A. Study of the Influence of the Thermal Capacity of the Lining of Acid Melting Furnaces on Their Efficiency. Metals 2023, 13, 337. [Google Scholar] [CrossRef]
- LLC “Siberian Abrasives”. Available online: http://yuaz.ru (accessed on 13 June 2023).
- Bethechtin, A.G. Course of Mineralogy: Manual; KDU: Moscow, Russia, 2007; p. 721. [Google Scholar]
- Berezhnoy, A.S. Silicon and Its Binary Systems; Academy of Sciences of the Ukrainian SSR: Kiev, Ukraine, 1958; p. 250. [Google Scholar]
- Gorshkov, V.S.; Savelyev, V.G.; Fedorov, N.F. Physical Chemistry of Silicates and Other Refractory Compounds; High School: Moscow, Russia, 1988; p. 400. [Google Scholar]
- Kukartsev, V.A.; Abkaryan, A.K.; Babkin, V.G. Study of the Phase Composition of Spent Quartzite Lining from a Crucible-Type Industrial Frequency Induction Furnace by X-ray Methods. Refract. Ind. Ceram. 2015, 55, 529–531. [Google Scholar] [CrossRef]
- Kukartsev, V.A. Refractory Mass. Patent for An Invention. Russia Patent 2511106, 26 November 2012. [Google Scholar]
- GOST 1412-85. Available online: https://mc.ru/gost/gost1412-85.pdf (accessed on 24 June 2023).
- CH20—Cast Iron Grey Marochnik Steel and Alloys. Available online: http://www.splav-kharkov.com/mat_start.php?name_id=458 (accessed on 24 June 2023).
- ISO 185 JL 200 Gray Cast Iron. Available online: https://www.iron-foundry.com/ISO-185-JL-200-Gray-Cast-Iron.html (accessed on 24 June 2023).
Metal Content | Content (%) | |
---|---|---|
Passport-Controlled Furnace | Proposed Value | |
Liquid residue | 30–33 | 10–20 |
Production return | 15–20 | 0 |
Cast iron and iron scrap metals | 10–15 | 0 |
Steel scrap metal | 25–30 | 78–88 |
Ferromanganese Ferrosilicon | 0.5–1 | 1–1.5 |
Carburizer | 0.5–0.6 | 1–2 |
Estimated costs, ths. rub | 19.1 | 11.9 |
Parameter Grilles | Temperature (°C) | ||||||
---|---|---|---|---|---|---|---|
25/30 Dry | 200 | 600 | 870 | 1025 | 1470 | 1550 | |
davg, Å | 2.814/ 2.7574 | 2.8340/ 2.9012 | 2.7913/ 3.0066 | 2.9277/ 3.0545 | 2.9796/ 3.1048 | 3.0384/ 3.156 | 3.2619/ 3.2156 |
Vavg, Å3 | 119.1/ 114.83 | 116.55/ 115.41 | 117.47/ 647.47 | 125.86/ 1653.02 | 124.06/ 1722.83 | 124.04/ 1742.69 | 143.65/ 1606.96 |
Davg, (g/cm3) | 2.5971/ 2.601 | 2.552/ 2.592 | 2.333/ 2.502 | 2.292/ 2.2685 | 2.291/ 2.266 | 2.229/ 2.265 | 2.227/ 2.258 |
Mavg, (g/mol) | 60.08/ 60.08 | 60.08/ 60.08 | 55.16/ 60.08 | 53.91/ 58.38 | 53.66/ 58.63 | 53.66/ 58.79 | 54.41/ 58.79 |
Phase composition | Quartzite | Quartzite | Quartzite/tridymite Quartzite | Quartzite cristobalite/tridymite Quartzite | Quartzite cristobalite/tridymite Quartzite | Quartzite cristobalite/tridymite Quartzite | Quartzite cristobalite/tridymite Cristobalite Quartzite |
Fraction (mm) | Mass Fraction (%) | |||
---|---|---|---|---|
Al2O3 Not Less Than | Fe2O3 Not Less Than | Na2O Not Less Than | SiO3 Not Less Than | |
3.2–0; 3.2–0.5; 0.5–0 | 99.0 | 0.4 | 0.4 | 0.1 |
0.315–0 | 99.0 | 0.4 | 0.4 | 0.1 |
250–0 | 99.0 | 0.4 | 0.4 | 0.1 |
Material | Mark | GOST and TC | Number (%) | |
---|---|---|---|---|
Traditional Composition | Proposed Composition | |||
Quartzite | PKMVI-2 | TC 1511-022-00190492-2003 | 98.79–99.33 | 93.43–96.07 |
Electrocorundum | 0315 | TC 2-036-00221066-013-93 | - | 2.75–4.15 |
Electrocorundum | 0125 | TC 2-036-00221066-013-93 | - | 0.51–1.21 |
Boric acid | B | GOST 18704-78 | 0.67–1.21 | 0.67–1.21 |
Interplane Distance (Å) | 2-Theta (°) | Value Intensity (%) | Count (%) | Formed Cell Phases |
---|---|---|---|---|
4.25253 | 20.872 | 221 | 12.2 | Quartzite |
4.05248 | 21.915 | 232 | 12.8 | Cristobalite |
3.46652 | 25.678 | 21.1 | 1.2 | – |
3.33994 | 26.669 | 18.18 | 100.0 | Quartzite |
3.26042 | 27.332 | 142 | 7.8 | Cristobalite |
3.14268 | 28.377 | 19.7 | 1.1 | – |
2.85077 | 31.353 | 26.9 | 1.5 | – |
2.49051 | 36.033 | 41.2 | 2.3 | – |
2.45505 | 36.572 | 213 | 11.7 | Quartzite |
2.38157 | 37.742 | 12.1 | 0.7 | – |
2.27932 | 39.504 | 151 | 8.3 | Quartzite |
2.23520 | 40.318 | 74.9 | 4.1 | Quartzite |
2.18481 | 41.289 | 16.0 | 0.9 | – |
2.12621 | 42.482 | 152 | 8.4 | Quartzite |
1.97880 | 45.819 | 93.4 | 5.1 | Quartzite |
1.81700 | 50.167 | 323 | 17.8 | Quartzite |
1.67128 | 54.891 | 65.2 | 3.6 | – |
1.65825 | 55.359 | 58.9 | 3.2 | – |
1.54148 | 59.962 | 189 | 10.4 | Quartzite |
1.45281 | 64.040 | 27.6 | 1.5 | – |
1.43433 | 64.965 | 27.1 | 1.5 | – |
1.41853 | 65.780 | 6.61 | 0.5 | – |
1.39336 | 67.123 | 18.5 | 1.0 | – |
1.38171 | 67.766 | 114 | 6.3 | Quartzite |
1.37294 | 68.258 | 165 | 9.1 | Cristobalite |
1.30417 | 72.405 | 16.5 | 0.9 | – |
1.28761 | 73.488 | 26.4 | 1.5 | – |
1.25613 | 75.647 | 50.0 | 2.7 | – |
1.22857 | 77.656 | 33.5 | 1.8 | – |
1.20000 | 79.870 | 19.3 | 1.1 | – |
Interplane Distance (Å) | 2-Theta (°) | Value Intensity (%) | Count (%) | Formed Cell Phases |
---|---|---|---|---|
4.33481 | 20.472 | 14.5 | 7.6 | Quartzite |
4.28106 | 20.732 | 34.5 | 18.2 | Dumortierite |
4.26001 | 20.835 | 35.5 | 18.5 | Dumortierite |
4.06312 | 21.657 | 138 | 72.7 | Quartzite |
3.36795 | 26.443 | 190 | 100.0 | Dumortierite |
3.33990 | 26.669 | 142 | 74.5 | Quartzite |
2.45936 | 36.506 | 36.9 | 19.4 | Cristobalite |
2.30933 | 38.970 | 12.7 | 6.7 | Quartzite |
2.28426 | 39.415 | 18.1 | 9.5 | Quartzite |
2.14693 | 42.052 | 13.5 | 7.1 | Quartzite |
1.82735 | 49.864 | 28.2 | 14.8 | Dumortierite |
1.81994 | 50.080 | 29.4 | 15.5 | Quartzite |
1.54368 | 59.868 | 27.2 | 14.3 | Quartzite |
1.45383 | 63.990 | 12.5 | 6.6 | Quartzite |
1.38425 | 67.625 | 32.2 | 16.9 | Quartzite |
1.37575 | 68.099 | 41.7 | 22.0 | Cristobalite |
1.23095 | 77.478 | 10.5 | 5.6 | Cristobalite |
Interplane Distance (Å) | 2-Theta (°) | Value Intensity (%) | Count (%) | Formed Cell Phases |
---|---|---|---|---|
4.05623 | 21.895 | 13.9 | 100.0 | Dumortierite |
3.14942 | 28.315 | 13.2 | 9.5 | Cristobalite |
2.85475 | 31.08 | 23.2 | 16.7 | Cristobalite |
2.49569 | 35.956 | 26.7 | 19.2 | Cristobalite |
1.93589 | 46.894 | 14.2 | 10.2 | Dumortierite |
1.87550 | 48.500 | 12.8 | 9.2 | Dumortierite |
1.85319 | 39.122 | 7.41 | 5.3 | Dumortierite |
1.59527 | 57.627 | 4.29 | 3.1 | Dumortierite |
1.54153 | 59.960 | 14.1 | 10.2 | Cristobalite |
1.48898 | 62.307 | 9.03 | 6.5 | Dumortierite |
1.33177 | 70.677 | 8.36 | 6.0 | Cristobalite |
1.24229 | 76.642 | 7.99 | 5.7 | Cristobalite |
1.22105 | 78.226 | 8.11 | 5.9 | Cristobalite |
Grid Phase Parameters | Characteristics of the Embossed Lining | ||
---|---|---|---|
Granular | Semi-Finished | Sinister | |
davg (Å) | 2.8974 | 2.9816 | 2.7739 |
Vavg (Å3) | 148.32 | 529.04 | 775.2 |
Davg (g/cm3) | 2.596 | 2.8543 | 2.9775 |
Mavg (g/mol) | 60.08 | 261.44 | 381.97 |
Phase composition | Quartzite—85.85%, melting temperature: 1610–1710 °C; cristobalite—14.15%, melting temperature: 1728 °C | Quartzite—34.3%; melting temperature: 1610–1710 °C; cristobalite—25.9%, melting temperature: 1728 °C; dumortierite—39.8%, melting temperature: 1570 °C | Cristobalite—36.4%, melting temperature: 1728 °C; dumortierite—63.6, melting temperature: 1570 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukartsev, V.A.; Trunova, A.I.; Kukartsev, V.V.; Tynchenko, V.S.; Kurashkin, S.O.; Tynchenko, Y.A.; Vivián, I.F.; Bashmur, K.A. Increasing the Efficiency of Synthetic Iron Production by the Use of New Kit Lining. Metals 2023, 13, 1184. https://doi.org/10.3390/met13071184
Kukartsev VA, Trunova AI, Kukartsev VV, Tynchenko VS, Kurashkin SO, Tynchenko YA, Vivián IF, Bashmur KA. Increasing the Efficiency of Synthetic Iron Production by the Use of New Kit Lining. Metals. 2023; 13(7):1184. https://doi.org/10.3390/met13071184
Chicago/Turabian StyleKukartsev, Viktor Alekseevich, Alina Igorevna Trunova, Vladislav Viktorovich Kukartsev, Vadim Sergeevich Tynchenko, Sergei Olegovich Kurashkin, Yadviga Aleksandrovna Tynchenko, Ismael Flores Vivián, and Kirill Aleksandrovich Bashmur. 2023. "Increasing the Efficiency of Synthetic Iron Production by the Use of New Kit Lining" Metals 13, no. 7: 1184. https://doi.org/10.3390/met13071184