Application of Digital Image Processing Techniques to Detect Through-Thickness Crack in Hole Expansion Test
Abstract
:1. Introduction
2. Experimental Setup
3. Digital Image Processing Algorithm
3.1. Crack Detection Algorithm
3.2. Hole Diameter Measurement Algorithm
4. Application of the DIP Algorithm
Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AHSS | Advanced High-Strength Steels |
CCD | Charge-Coupled Device |
CHT | Circular Hough Transform |
DIC | Digital Image Correlation |
DIP | Digital Image Processing |
DRMS | Digital Recording and Measurement System |
HER | Hole Expansion Ratio |
HET | Hole Expansion Test |
HT | Hough Transform |
PVD | Physical Vapor Deposition |
ROI | Region of Interest |
References
- Hovorun, T.P.; Berladir, K.V.; Pererva, V.I.; Rudenko, S.G.; Martynov, A.I. Modern materials for automotive industry. J. Eng. Sci. 2017, 4, f8–f18. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.G.M.; Roy, A. Chapter Renewable and Sustainable Materials in Automotive Industry. In Encyclopedia of Renewable and Sustainable Materials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 162–179. [Google Scholar]
- Hilditch, T.; Souza, T.; Hodgson, P. Chapter 2—Properties and automotive applications of advanced high-strength steels (AHSS). In Welding and Joining of Advanced High Strength Steels (AHSS); Woodhead Publishing: Sawston, UK, 2015; pp. 9–28. [Google Scholar]
- Santos, R.; Pereira, A.; Butuc, M.C.; Vincze, G.; Festas, A.; Moreira, L. Development of a Device Compatible with Universal Testing Machine to Perform Hole Expansion and Erichsen Cupping Tests. Machines 2019, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- ISO 16630:2009; Metallic Materials-Sheet and Strip-Hole Expanding Test. International Organization for Standardization: Geneva, Switzerland, 2009.
- Hance, B. Practical Application of the Hole Expansion Test. SAE Int. J. Engines 2017, 10, 247–257. [Google Scholar] [CrossRef]
- Yoon, J.I.; Jung, J.; Joo, S.H.; Song, T.J.; Chin, K.G.; Seo, M.H.; Kim, S.J.; Lee, S.; Kim, H.S. Correlation between fracture toughness and stretch-flangeability of advanced high strength steels. Mater. Lett. 2016, 180, 322–326. [Google Scholar] [CrossRef]
- Dünckelmeyer, M.; Krempaszky, C.; Werner, E.; Doppler, C. Instrumented hole expansion test. Mater. Sci. 2009, 8, 50–57. [Google Scholar]
- Panich, S.; Chongbunwatana, K. Influence of anisotropic yield criteria on simulation accuracy of the hole-expansion test. IOP Conf. Ser. Mater. Sci. Eng. 2020, 967, 012037. [Google Scholar] [CrossRef]
- Leonhardt, A.; Kräusel, V.; Paar, U. Automated hole expansion test with pneumatic crack detection. IOP Conf. Ser. Mater. Sci. Eng. 2019, 480, 012026. [Google Scholar] [CrossRef] [Green Version]
- Schreier, H.; Orteu, J.J.; Sutton, M.A. Image Correlation for Shape, Motion and Deformation Measurements; Springer US: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Behrens, B.A.; Diaz-Infante, D.; Altan, T.; Yilkiran, D.; Wölki, K.; Hübner, S. Improving Hole Expansion Ratio by Parameter Adjustment in Abrasive Water Jet Operations for DP800. SAE Int. J. Mater. Manuf. 2018, 11, 241–252. [Google Scholar] [CrossRef]
- Chen, X.; Yang, L.; Chirac, C.; Du, C.; Zhou, D. Measurement of Strain Distribution for Hole Expansion with Digital Image Correlation (DIC) System; SAE: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Yan, D.W. Influence of Experiment Methods on Limit Hole Expansion Ratio. DEStech Trans. Eng. Technol. Res. 2016. [Google Scholar] [CrossRef]
- Krempaszky, C.; Larour, P.; Freudenthaler, J.; Werner, E. Towards More Efficient Hole Expansion Testing. In Proceedings of the IDDRG 2014 Conference, Paris, France, 1–4 June 2014. [Google Scholar]
- Wang, K.; Luo, M.; Wierzbicki, T. Experiments and modeling of edge fracture for an AHSS sheet. Int. J. Fract. 2014, 187, 245–268. [Google Scholar] [CrossRef] [Green Version]
- Barlo, A.; Sigvant, M.; Pérez, L.; Islam, M.S.; Pilthammar, J. A Study of the Boundary Conditions in the ISO-16630 Hole Expansion Test. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1238, 012031. [Google Scholar] [CrossRef]
- Oh, S.H.; Yang, S.H.; Kim, Y.S. Chapter A study of image processing based hole expansion test. In Testing and Measurement: Techniques and Applications; CRC Press: London, UK, 2015; p. 8. [Google Scholar]
- Pratt, W.K. Digital Image Processing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 2nd ed.; Pearson: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Chiriac, C.; Chen, G. Formability Characterization of AHSS-Digital Camera Based Hole Expansion Test Development. In Proceedings of the International Deep Drawing Research Group IDDRG 2008 International Conference, Olofström, Sweden, 16–18 June 2008; pp. 16–18. [Google Scholar]
- Kim, H.; Shang, J.; Beam, K.; Samant, A.; Hoschouer, C.; Dykeman, J. Development of new hole expansion testing method. J. Phys. Conf. Ser. 2016, 734, 032025. [Google Scholar] [CrossRef]
- Choi, S.; Kim, K.; Lee, J.; Park, S.H.; Lee, H.J.; Yoon, J. Image Processing Algorithm for Real-Time Crack Inspection in Hole Expansion Test. Int. J. Precis. Eng. Manuf. 2019, 20, 1139–1148. [Google Scholar] [CrossRef]
- Park, J.; Won, C.; Lee, H.J.; Yoon, J. Integrated Machine Vision System for Evaluating Hole Expansion Ratio of Advanced High-Strength Steels. Materials 2022, 15, 553. [Google Scholar] [CrossRef]
- Cruz, D.J.; Santos, A.D.; Amaral, R.L.; Mendes, J.G.; Miranda, S.S.; Fernandes, J.V. Chapter An integrated methodology for HER determination in hole expansion test. In Materials Design and Applications III; Advanced Structured Materials; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 243–256. [Google Scholar]
- Duarte, J.F.; Santos, A.D.d.; da Rocha, A.B. Development of Testing Equipment for Sheet Metal Forming Analysis. In Proceedings of the IDDRG’94-International Deep Drawing Research Group 18th Biennial Congress, Conference Proceedings, Lisbon, Portugal, 16–20 May 1994; pp. 259–272. [Google Scholar]
- Sousa, J.P. Desenvolvimento de um Sistema de Controlo e Aquisição de Dados para Máquina Universal de Ensaios de Chapas Metálicas. Master’s Thesis, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal, 2019. [Google Scholar]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Bradley, D.; Roth, G. Adaptive Thresholding using the Integral Image. J. Graph. Tools 2007, 12, 13–21. [Google Scholar] [CrossRef]
- Soille, P. Morphological Image Analysis; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Atherton, T.; Kerbyson, D. Size invariant circle detection. Image Vis. Comput. 1999, 17, 795–803. [Google Scholar] [CrossRef]
- Yuen, H.; Princen, J.; Illingworth, J.; Kittler, J. Comparative study of Hough Transform methods for circle finding. Image Vis. Comput. 1990, 8, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Hough, P.V. Method and Means for Recognizing Complex Patterns. U.S. Patent 3,069,654, 18 December 1962. [Google Scholar]
- Duda, R.O.; Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15. [Google Scholar] [CrossRef]
- Smereka, M.; Duleba, I. Circular Object Detection Using a Modified Hough Transform. Appl. Math. Comput. Sci. 2008, 18, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [Google Scholar] [CrossRef]
- Parker, J.R. Algorithms for Image Processing and Computer Vision, 2nd ed.; John Wiley & Sons: Chichester, UK, 2010. [Google Scholar]
- Marques, A.E.; Dib, M.A.; Khalfallah, A.; Soares, M.S.; Oliveira, M.C.; Fernandes, J.V.; Ribeiro, B.M.; Prates, P.A. Machine Learning for Predicting Fracture Strain in Sheet Metal Forming. Metals 2022, 12, 1799. [Google Scholar] [CrossRef]
- ISO 6892-1; Metallic Materials-Tensile Testing-Method of Test at Room Temperature. International Organization for Standardization: Geneva, Switzerland, 2016.
- Li, W.; Xia, M.; Peng, P.; Jia, Q.; Wan, Z.; Zhu, Y.; Guo, W. Microstructural evolution and deformation behavior of fiber laser welded QP980 steel joint. Mater. Sci. Eng. A 2018, 717, 124–133. [Google Scholar] [CrossRef]
Image Binarization | Method | Adaptive |
Sensitivity | 0.51 | |
Foreground Polarity | ’bright’ | |
Blob detection | Method | Clear Borders |
Pixel connectivity | 8 | |
Method | Close Mask | |
Structuring element | Disk | |
Size | 1 px | |
Method | Fill Holes | |
Pixel connectivity | 4 | |
ROI Selection | Method | Image Filtering |
Number of returned objects | 1 | |
Property to filter | Area | |
Criterium | ’largest’ |
Edge Detection Step | Method | ’Canny Edge’ |
Threshold Value | 0.5 | |
Hough Transform | Method | ’Phase Code’ |
Edge Threshold | 0.23 | |
Sensivity | 0.93 | |
Object Polarity | Bright |
Material | Thickness | Yield | Ultimate | Uniform | Initial |
---|---|---|---|---|---|
Strength | Strength | Elongation | Diameter | ||
ID | t (mm) | Re (MPa) | Rm (MPa) | A (50%) | (mm) |
#1 | 2.514 | 480.28 | 548.82 | 26.5 | 10.031 |
#2 | 2.319 | 517.83 | 581.20 | 23.5 | 10.029 |
#3 | 1.997 | 577.93 | 611.54 | 24.0 | 10.028 |
Material ID | DIP Algorithm | Direct Measurement | ||
---|---|---|---|---|
#1 | Sample 1 | (mm) | 14.98 | 15.26 |
HER (%) | 49.4 | 52.1 | ||
Sample 2 | (mm) | 15.03 | 15.50 | |
HER (%) | 49.8 | 54.5 | ||
Error (%) | HER | 0.4% | 2.4% | |
#2 | Sample 1 | (mm) | 17.42 | 18.12 |
HER (%) | 73.7 | 80.7 | ||
Sample 2 | (mm) | 17.36 | 18.18 | |
HER (%) | 73.2 | 81.3 | ||
Error (%) | HER | 0.5% | 0.6% | |
#3 | Sample 1 | D (mm) | 13.20 | 14.61 |
HER (%) | 31.6 | 45.6 | ||
Sample 2 | D (mm) | 13.47 | 13.97 | |
HER (%) | 34.4 | 39.4 | ||
Error (%) | HER | 2.8% | 6.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz, D.J.; Amaral, R.L.; Santos, A.D.; Tavares, J.M.R.S. Application of Digital Image Processing Techniques to Detect Through-Thickness Crack in Hole Expansion Test. Metals 2023, 13, 1197. https://doi.org/10.3390/met13071197
Cruz DJ, Amaral RL, Santos AD, Tavares JMRS. Application of Digital Image Processing Techniques to Detect Through-Thickness Crack in Hole Expansion Test. Metals. 2023; 13(7):1197. https://doi.org/10.3390/met13071197
Chicago/Turabian StyleCruz, Daniel J., Rui L. Amaral, Abel D. Santos, and João Manuel R. S. Tavares. 2023. "Application of Digital Image Processing Techniques to Detect Through-Thickness Crack in Hole Expansion Test" Metals 13, no. 7: 1197. https://doi.org/10.3390/met13071197
APA StyleCruz, D. J., Amaral, R. L., Santos, A. D., & Tavares, J. M. R. S. (2023). Application of Digital Image Processing Techniques to Detect Through-Thickness Crack in Hole Expansion Test. Metals, 13(7), 1197. https://doi.org/10.3390/met13071197