Multi-Scale Structuring of CoCrMo and AZ91D Magnesium Alloys Using Direct Laser Interference Patterning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Laser Structuring
2.3. Surface Analysis
3. Results and Discussion
3.1. CoCrMo Alloy
3.2. AZ91D Alloy
4. Conclusions
- DLIP allowed the production of homogeneous line-like structures with a spatial period of 5 μm and with depths up to 0.85 μm for the CoCrMo alloy. Furthermore, sub-micrometric secondary structures, which can be reported as LIPSS, were also present at high energy conditions. Although ablation occurred over the entire surface, not only at the maxima interference regions, homogeneous and well-defined surfaces were achieved at every condition tested (fluence between 3.8 J/cm2 and 13.3 J/cm2 and overlap between 85% and 98%).
- Regarding the AZ91D alloy, fabrication of line-like structures with a periodicity of 5 μm and an average depth between 0.9 μm and 2.5 μm, deeper than the CoCrMo, was also successfully achieved. However, the high temperatures generated by the laser caused some melting, especially at high values of fluence, and oxidation of the surface, with the formation of spherical Mg-Al-O oxide particles. For high energy conditions (high fluence and/or overlap), the molten material started to accumulate inside the grooves, decreasing their depth.
- Although the influence of the oxidised surface and the multiscale surface topography must be further studied, these results bring optimistic perspectives to the possibility of the fabrication of micrometric periodic structures for the functionalisation of AZ91D magnesium and CoCrMo alloys for different engineering applications.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, M.S.; Arnold, C.B. Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification. In Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 135, pp. 91–120. [Google Scholar]
- Watanabe, H.; Saito, K.; Kokubun, K.; Sasaki, H.; Yoshinari, M. Change in Surface Properties of Zirconia and Initial Attachment of Osteoblastlike Cells with Hydrophilic Treatment. Dent. Mater. J. 2012, 31, 806–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumas, V.; Rattner, A.; Vico, L.; Audouard, E.; Dumas, J.C.; Naisson, P.; Bertrand, P. Multiscale Grooved Titanium Processed with Femtosecond Laser Influences Mesenchymal Stem Cell Morphology, Adhesion, and Matrix Organization. J. Biomed. Mater. Res. A 2012, 100, 3108–3116. [Google Scholar] [CrossRef] [PubMed]
- Le Guéhennec, L.; Soueidan, A.; Layrolle, P.; Amouriq, Y. Surface Treatments of Titanium Dental Implants for Rapid Osseointegration. Dent. Mater. 2007, 23, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Bohinc, K.; Dražić, G.; Fink, R.; Oder, M.; Jevšnik, M.; Nipič, D.; Godič-Torkar, K.; Raspor, P. Available Surface Dictates Microbial Adhesion Capacity. Int. J. Adhes. Adhes. 2014, 50, 265–272. [Google Scholar] [CrossRef]
- Cunha, A.; Elie, A.M.; Plawinski, L.; Serro, A.P.; Botelho Do Rego, A.M.; Almeida, A.; Urdaci, M.C.; Durrieu, M.C.; Vilar, R. Femtosecond Laser Surface Texturing of Titanium as a Method to Reduce the Adhesion of Staphylococcus Aureus and Biofilm Formation. Appl. Surf. Sci. 2016, 360, 485–493. [Google Scholar] [CrossRef]
- Lukaszewska-Kuska, M.; Wirstlein, P.; Majchrowski, R.; Dorocka-Bobkowska, B. Osteoblastic Cell Behaviour on Modified Titanium Surfaces. Micron 2018, 105, 55–63. [Google Scholar] [CrossRef]
- Stark, T.; Alamri, S.; Aguilar-Morales, A.I.; Kiedrowski, T.; Lasagni, A.F. Positive Effect of Laser Structured Surfaces on Tribological Performance. J. Laser Micro/Nanoeng. 2019, 14, 13–18. [Google Scholar] [CrossRef]
- Bauer, F.; Michalowski, A.; Kiedrowski, T.; Nolte, S. Heat Accumulation in Ultra-Short Pulsed Scanning Laser Ablation of Metals. Opt. Express 2015, 23, 1035. [Google Scholar] [CrossRef]
- El-Khoury, M.; Alamri, S.; Voisiat, B.; Kunze, T.; Lasagni, A.F. Fabrication of Hierarchical Surface Textures Using Multi-Pulse Direct Laser Interference Patterning with Nanosecond Pulses. Mater. Lett. 2020, 258, 126743. [Google Scholar] [CrossRef]
- Mücklich, F.; Lasagni, A.; Daniel, C. Laser Interference Metallurgy—Using Interference as a Tool for Micro/Nano Structuring. Int. J. Mater. Res. 2006, 97, 1337–1344. [Google Scholar] [CrossRef]
- Mordike, B.L.; Ebert, T. Magnesium Properties—Applications—Potential. Mater. Sci. Eng. A 2001, 302, 37–45. [Google Scholar] [CrossRef]
- Pinela, V.M.; De Oliveira, L.A.; De Oliveira, M.C.L.; Antunes, R.A. Study of the Corrosion Process of AZ91D Magnesium Alloy during the First Hours of Immersion in 3.5 Wt.% NaCl Solution. Int. J. Corros. 2018, 2018, 8785154. [Google Scholar] [CrossRef]
- Braszczyńska-Malik, K.N. Discontinuous and Continuous Precipitation in Magnesium–Aluminium Type Alloys. J. Alloys Compd. 2009, 477, 870–876. [Google Scholar] [CrossRef]
- Henriques, B.; Soares, D.; Silva, F.S. Microstructure, Hardness, Corrosion Resistance and Porcelain Shear Bond Strength Comparison between Cast and Hot Pressed CoCrMo Alloy for Metal-Ceramic Dental Restorations. J. Mech. Behav. Biomed. Mater. 2012, 12, 83–92. [Google Scholar] [CrossRef]
- Matković, T.; Matković, P.; Malina, J. Effects of Ni and Mo on the Microstructure and Some Other Properties of Co–Cr Dental Alloys. J. Alloys Compd. 2004, 366, 293–297. [Google Scholar] [CrossRef]
- Schieber, R.; Lasserre, F.; Hans, M.; Fernández-Yagüe, M.; Díaz-Ricart, M.; Escolar, G.; Ginebra, M.P.; Mücklich, F.; Pegueroles, M. Direct Laser Interference Patterning of CoCr Alloy Surfaces to Control Endothelial Cell and Platelet Response for Cardiovascular Applications. Adv. Healthc. Mater. 2017, 6, 1700327. [Google Scholar] [CrossRef]
- Milles, S.; Soldera, M.; Voisiat, B.; Lasagni, A.F. Fabrication of Superhydrophobic and Ice-Repellent Surfaces on Pure Aluminium Using Single and Multiscaled Periodic Textures. Sci. Rep. 2019, 9, 13944. [Google Scholar] [CrossRef] [Green Version]
- Henriques, B.; Fabris, D.; Voisiat, B.; Lasagni, A.F. Multi-Scale Textured PEEK Surfaces Obtained by Direct Laser Interference Patterning Using IR Ultra-Short Pulses. Mater. Lett. 2023, 339, 134091. [Google Scholar] [CrossRef]
- Aguilar-Morales, A.I.; Alamri, S.; Lasagni, A.F. Micro-Fabrication of High Aspect Ratio Periodic Structures on Stainless Steel by Picosecond Direct Laser Interference Patterning. J. Mater. Process. Technol. 2018, 252, 313–321. [Google Scholar] [CrossRef]
- Mulko, L.; Soldera, M.; Lasagni, A.F. Structuring and Functionalization of Non-Metallic Materials Using Direct Laser Interference Patterning: A Review. Nanophotonics 2022, 11, 203–240. [Google Scholar] [CrossRef]
- Alamri, S.; Fraggelakis, F.; Kunze, T.; Krupop, B.; Mincuzzi, G.; Kling, R.; Lasagni, A.F. On the Interplay of DLIP and LIPSS Upon Ultra-Short Laser Pulse Irradiation. Materials 2019, 12, 1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonse, J.; Krüger, J.; Höhm, S.; Rosenfeld, A. Femtosecond Laser-Induced Periodic Surface Structures. J. Laser Appl. 2012, 24, 042006. [Google Scholar] [CrossRef]
- Bonse, J.; Hohm, S.; Kirner, S.V.; Rosenfeld, A.; Kruger, J. Laser-Induced Periodic Surface Structures—A Scientific Evergreen. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 9000615. [Google Scholar] [CrossRef]
- Cunha, A.; Zouani, O.F.; Plawinski, L.; Botelho do Rego, A.M.; Almeida, A.; Vilar, R.; Durrieu, M.-C. Human Mesenchymal Stem Cell Behavior on Femtosecond Laser-Textured Ti-6Al-4V Surfaces. Nanomedicine 2015, 10, 725–739. [Google Scholar] [CrossRef] [PubMed]
- Batal, A.; Sammons, R.; Dimov, S. Response of Saos-2 Osteoblast-like Cells to Laser Surface Texturing, Sandblasting and Hydroxyapatite Coating on CoCrMo Alloy Surfaces. Mater. Sci. Eng. C 2019, 98, 1005–1013. [Google Scholar] [CrossRef]
- Cuao Moreu, C.A.; Maldonado Cortés, D.; Lara Banda, M.d.R.; García Sánchez, E.O.; Zambrano Robledo, P.; Hernández Rodríguez, M.A.L. Surface, Chemical, and Tribological Characterization of an ASTM F-1537 Cobalt Alloy Modified through an Ns-Pulse Laser. Metals 2021, 11, 1719. [Google Scholar] [CrossRef]
- Rosenkranz, A.; Hans, M.; Gachot, C.; Thome, A.; Bonk, S.; Mücklich, F. Direct Laser Interference Patterning: Tailoring of Contact Area for Frictional and Antibacterial Properties. Lubricants 2016, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Fleming, T.J.; Kavanagh, A.; Duggan, G. The Effect of Melt Temperature on the Mechanical Properties of Cast ASTM F75 CoCrMo Alloy as Explained by Nitrogen and Oxygen Content. J. Mater. Res. Technol. 2020, 9, 9479–9486. [Google Scholar] [CrossRef]
- Aguilar-Morales, A.I.; Alamri, S.; Voisiat, B.; Kunze, T.; Lasagni, A.F. The Role of the Surface Nano-Roughness on the Wettability Performance of Microstructured Metallic Surface Using Direct Laser Interference Patterning. Materials 2019, 12, 2737. [Google Scholar] [CrossRef] [Green Version]
- Marin, E.; Lanzutti, A.; Rondinella, A.; Sordetti, F.; Magnan, M.; Honma, T.; Yoshida, Y.; Zhu, W.; Pezzotti, G.; Fedrizzi, L. Multi-Spectroscopic Analysis of High Temperature Oxides Formed on Cobalt-Chrome-Molybdenum Alloys. J. Mater. Res. Technol. 2022, 20, 3061–3073. [Google Scholar] [CrossRef]
- Coelho, C.C.; Padrão, T.; Costa, L.; Pinto, M.T.; Costa, P.C.; Domingues, V.F.; Quadros, P.A.; Monteiro, F.J.; Sousa, S.R. The Antibacterial and Angiogenic Effect of Magnesium Oxide in a Hydroxyapatite Bone Substitute. Sci. Rep. 2020, 10, 19098. [Google Scholar] [CrossRef]
- Jafari, H.; Idris, M.H.; Ourdjini, A. High Temperature Oxidation of AZ91D Magnesium Alloy Granule during In-Situ Melting. Corros. Sci. 2011, 53, 655–663. [Google Scholar] [CrossRef]
- Aulakh, S.S.; Kaushal, G. Laser Texturing as an Alternative to Grit Blasting for Improved Coating Adhesion on AZ91D Magnesium Alloy. Trans. IMF 2019, 97, 100–108. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henriques, B.; Fabris, D.; Voisiat, B.; Lasagni, A.F. Multi-Scale Structuring of CoCrMo and AZ91D Magnesium Alloys Using Direct Laser Interference Patterning. Metals 2023, 13, 1248. https://doi.org/10.3390/met13071248
Henriques B, Fabris D, Voisiat B, Lasagni AF. Multi-Scale Structuring of CoCrMo and AZ91D Magnesium Alloys Using Direct Laser Interference Patterning. Metals. 2023; 13(7):1248. https://doi.org/10.3390/met13071248
Chicago/Turabian StyleHenriques, Bruno, Douglas Fabris, Bogdan Voisiat, and Andrés Fabián Lasagni. 2023. "Multi-Scale Structuring of CoCrMo and AZ91D Magnesium Alloys Using Direct Laser Interference Patterning" Metals 13, no. 7: 1248. https://doi.org/10.3390/met13071248
APA StyleHenriques, B., Fabris, D., Voisiat, B., & Lasagni, A. F. (2023). Multi-Scale Structuring of CoCrMo and AZ91D Magnesium Alloys Using Direct Laser Interference Patterning. Metals, 13(7), 1248. https://doi.org/10.3390/met13071248