Structure, Phase Composition, and Mechanical Properties of ZK51A Alloy with AlN Nanoparticles after Heat Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Casting Magnesium Alloys
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, G.L.; Xu, Z.Q. The surface, microstructure and corrosion of magnesium alloy AZ31 sheet. Electrochim. Acta 2010, 55, 4148–4161. [Google Scholar] [CrossRef]
- Morozova, G.I. Phase composition and corrosion resistance of magnesium alloys. Met. Sci. Heat. Treat. 2008, 50, 100–104. [Google Scholar] [CrossRef]
- Jayasathyakawin, S.; Ravichandran, M.; Baskar, N.; Anand Chairman, C.; Balasundaram, R. Mechanical properties and applications of Magnesium alloy–Review. Mat. Tod. Proc. 2020, 27, 909–913. [Google Scholar] [CrossRef]
- Penghuai, F.; Liming, P.; Haiyan, J.; Wenjiang, D.; Chunquan, Z. Tensile properties of high strength cast Mg alloys at room temperature: A review. China Foundry 2014, 11, 277–286. [Google Scholar]
- Ramalingam, V.V.; Ramasamy, P.; Kovukkal, M.D.; Myilsamy, G. Research and Development in Magnesium Alloys for Industrial and Biomedical Applications: A Review. Met. Mater. Int. 2020, 26, 409–430. [Google Scholar] [CrossRef]
- Reinor, G.V. The Physical Metallurgy of Magnesium and Its Alloys; Metallurgiya: Moscow, Russia, 1964; 477p. (In Russian) [Google Scholar]
- Li, P.; Hou, D.; Han, E.H.; Chen, R.; Shan, Z. Solidification of Mg–Zn–Zr alloys: Grain growth restriction, dendrite coherency and grain size. Acta Metall. Sin. Engl. Lett. 2020, 33, 1477–1486. [Google Scholar] [CrossRef]
- Qian, M.; Das, A. Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains. Scr. Mater. 2006, 54, 881–886. [Google Scholar] [CrossRef]
- Xing, F.; Guo, F.; Su, J.; Zhao, X.; Cai, H. The existing forms of Zr in Mg-Zn-Zr magnesium alloys and its grain refinement mechanism. Mater. Res. Express. 2021, 8, 066516. [Google Scholar] [CrossRef]
- Song, C.; Han, Q.; Zhai, Q. Review of grain refinement methods for as-cast microstructure of magnesium alloy. China Foundry 2009, 6, 93–103. [Google Scholar]
- Yang, W.; Liu, L.; Zhang, J.; Ji, S.; Fan, Z. Heterogeneous nucleation in Mg–Zr alloy under die casting condition. Mater. Lett. 2015, 160, 263–267. [Google Scholar] [CrossRef]
- Koltygin, A.V.; Bazhenov, V.E.; Letyagin, N.V.; Belov, V.D. The influence of composition and heat treatment on the phase composition and mechanical properties of ML19 magnesium alloy. Russ. J. Non-Ferr. Met. 2018, 59, 32–41. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Guo, H.; Lan, F.; Hou, H. Mechanical and Thermal Conductivity Properties of Enhanced Phases in Mg-Zn-Zr System from First Principles. Materials 2018, 11, 2010. [Google Scholar] [CrossRef] [PubMed]
- Koltygin, A.V.; Bazhenov, V.E. Influence of the chemical composition and heat treatment modes on the phase composition and mechanical properties of the ZK51A (ML12) alloy. Russ. J. Non-Ferr. Met. 2018, 59, 190–199. [Google Scholar] [CrossRef]
- Morozova, G.I.; Tikhonova, V.V.; Lashko, N.F. Phase composition and mechanical properties of cast Mg−Zn−Zr alloys. Met. Sci. Heat. Treat. 1978, 20, 657–660. [Google Scholar] [CrossRef]
- Morozova, G.I.; Mukhina, I.Y. Nanostructural hardening of cast magnesium alloys of the Mg–Zn–Zr system. Met. Sci. Heat. Treat. 2011, 53, 3. [Google Scholar] [CrossRef]
- Mukhina, I.Y. Structure and properties of new foundry magnesium alloys. Foundry Prod. 2011, 12, 12–14. (In Russian) [Google Scholar]
- Vorozhtsov, S.A.; Khrustalyov, A.P.; Eskin, D.G.; Kulkov, S.N.; Alba-Baena, N. The physical-mechanical and electrical properties of cast aluminum-based alloys reinforced with diamond nanoparticles. Russ. Phys. J. 2015, 57, 1485–1490. [Google Scholar] [CrossRef]
- Zheng, H.R.; Li, Z.; You, C.; Liu, D.B.; Chen, M.F. Effects of MgO modified β-TCP nanoparticles on the microstructure and properties of β-TCP/Mg-Zn-Zr composites. Bioactive Mater. 2017, 2, 1–9. [Google Scholar] [CrossRef]
- Wong, W.L.; Gupta, M. Effect of hybrid length scales (micro+ nano) of SiC reinforcement on the properties of magnesium. Solid State Phenom. 2006, 111, 91–94. [Google Scholar] [CrossRef]
- Hassan, S.F.; Gupta, M. Creation of high-performance Mg based composite containing nano-size Al2O3 particulates as reinforcement. J. Metast. Nanocr. Mat. 2005, 23, 151–154. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, C.; Zhao, D.; Sun, Y.; Wang, X.; Liu, F. Microstructure characteristics and enhanced tensile properties of in-situ AlN/AZ91 composites prepared by liquid nitriding method. Mater. Sci. Eng. A 2018, 725, 207–214. [Google Scholar] [CrossRef]
- Fu, H.M.; Zhang, M.X.; Qiu, D.; Kelly, P.M.; Taylor, J.A. Grain refinement by AlN particles in Mg–Al based alloys. J. Alloys Compd. 2009, 478, 809–812. [Google Scholar] [CrossRef]
- Cao, G.; Choi, H.; Oportus, J.; Konishi, H.; Li, X. Study on tensile properties and microstructure of cast AZ91D/AlN nanocomposites. Mater. Sci. Eng. A 2008, 494, 127–131. [Google Scholar] [CrossRef]
- Berkmortel, R.; Wang, G.G.; Bakke, P. Fluxless in-house recycling of high purity magnesium die cast alloys at Meridian operations. In Proceedings of the 57th IMA Conference, Vancouver BC, Canada, 21–23 May 2000; pp. 22–27. [Google Scholar]
- Liu, P.; Geng, H.R.; Wang, Z.Q.; Zhu, J.R.; Pan, F.S.; Dong, X.B. Effect of AlN on Microstructure and Mechanical Properties of Mg-Al-Zn Alloy. Mater. Sci. Forum 2011, 704–705, 1095–1099. [Google Scholar] [CrossRef]
- Wahab, M.N.; Daud, A.R.; Ghazali, M.J. Preparation and characterization of stir cast-aluminum nitride reinforced aluminum metal matrix composites. Int. J. Mech. Mater. Eng. 2009, 4, 115–117. [Google Scholar]
- Vinayagam, M.; Ravichandran, M. Influence of AlN particles on microstructure, mechanical and tribological behaviour in AA6351 aluminum alloy. Mater. Res. Express 2019, 6, 106557. [Google Scholar] [CrossRef]
- Huang, S.J.; Abbas, A. Effects of tungsten disulfide on microstructure and mechanical properties of AZ91 magnesium alloy manufactured by stir casting. J. Alloys Compd. 2020, 817, 153321. [Google Scholar] [CrossRef]
- Hassan, S.F.; Gupta, M. Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement. Metall. Mater. Trans. A 2005, 36, 2253–2258. [Google Scholar] [CrossRef]
- Sajuri, Z.B.; Miyashita, Y.; Hosokai, Y.; Mutoh, Y. Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys. Inter. J. Mech. Sci. 2006, 48, 198–209. [Google Scholar] [CrossRef]
- Pan, F.; Yang, M.; Chen, X. A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys. J. Mater. Sci. Tech. 2016, 32, 1211–1221. [Google Scholar] [CrossRef]
- Kakhidze, N.I.; Khrustalev, A.P.; Akhmadieva, A.A.; Zhukov, I.A.; Vorozhtsov, A.B. Influence of tungsten nanoparticles on the structure and mechanical behavior of AA5056 under quasi-static loading. In Light Metals; Springer: Cham, Switzerland, 2022; pp. 97–103. [Google Scholar] [CrossRef]
- Khrustalyov, A.; Kakhidze, N.; Platov, V.; Zhukov, I.; Vorozhtsov, A. Influence of tungsten nanoparticles on microstructure and mechanical properties of an Al-5% mg alloy produced by casting. Metals 2022, 12, 989. [Google Scholar] [CrossRef]
- Khrustalyov, A.P.; Akhmadieva, A.; Monogenov, A.N.; Zhukov, I.A.; Marchenko, E.S.; Vorozhtsov, A.B. Study of the effect of diamond nanoparticles on the structure and mechanical properties of the medical Mg–Ca–Zn magnesium alloy. Metals 2022, 12, 206. [Google Scholar] [CrossRef]
- Lerner, M.; Vorozhtsov, A.; Guseinov, S.; Storozhenko, P. Metal Nanopowders: Production Characterization, and Energetic Applications; Wiley-VCH: Weinheim, Germany, 2014; pp. 79–106. [Google Scholar]
- Khrustalyov, A.; Zhukov, I.; Nikitin, P.; Kolarik, V.; Klein, F.; Akhmadieva, A.; Vorozhtsov, A. Study of Influence of aluminum nitride nanoparticles on the structure, phase composition and mechanical properties of AZ91 alloy. Metals 2022, 12, 277. [Google Scholar] [CrossRef]
- Orlov, D.; Pelliccia, D.; Fang, X.; Bourgeois, L.; Kirby, N.; Nikulin, A.Y.; Ameyama, K.; Estrin, Y. Particle evolution in Mg–Zn–Zr alloy processed by integrated extrusion and equal channel angular pressing: Evaluation by electron microscopy and synchrotron small-angle X-ray scattering. Acta Mater. 2014, 72, 110–124. [Google Scholar] [CrossRef]
- Liu, S.; Yang, W.; Shi, X.; Li, B.; Duan, S.; Guo, H.; Guo, J. Influence of laser process parameters on the densification, microstructure, and mechanical properties of a selective laser melted AZ61 magnesium alloy. J. Alloys Compd. 2019, 808, 151160. [Google Scholar] [CrossRef]
- Wang, B.J.; Xu, D.K.; Sun, J.; Han, E.H. Effect of grain structure on the stress corrosion cracking (SCC) behavior of an as-extruded Mg-Zn-Zr alloy. Corr. Sci. 2019, 157, 347–356. [Google Scholar] [CrossRef]
- Dieringa, H.; Katsarou, L.; Buzolin, R.; Szakács, G.; Horstmann, M.; Wolff, M.; Mendis, C.; Vorozhtsov, S.; StJohn, D. Ultrasound Assisted Casting of an AM60 Based Metal Matrix Nanocomposite, Its Properties, and Recyclability. Metals 2017, 7, 388. [Google Scholar] [CrossRef]
- Khrustalyov, A.P.; Garkushin, G.V.; Zhukov, I.A.; Razorenov, S.V.; Vorozhtsov, A.B. Quasi-Static and Plate Impact Loading of Cast Magnesium Alloy ML5 Reinforced with Aluminum Nitride Nanoparticles. Metals 2019, 9, 715. [Google Scholar] [CrossRef]
- Petch, N. The cleavage strength of polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
Al | N | Si | C | S | Fe | O | Cl | Cu | Ni | P |
---|---|---|---|---|---|---|---|---|---|---|
66.8621 | 31.6132 | 0.1524 | 0.0561 | 0.0013 | 0.0354 | 1.1026 | 0.1178 | 0.0217 | 0.0192 | 0.0182 |
Alloy Specimens | Phases | Phase Content, wt.% | Lattice Parameters, Ǻ | CSR Size, nm | Δd/d‧10−3 |
---|---|---|---|---|---|
ZK51A | α-Mg | 100 | a = 3.2040 c = 5.2005 | 57 | 0.8 |
ZK51A + 0.1 wt.% AlN | α-Mg | 88 | a = 3.2038 c = 5.2006 | 65 | 0.2 |
AlN | 12 | a = 4.2324 | 39 | 1.1 | |
ZK51A + 0.5 wt.% AlN | α-Mg | 97 | a = 3.2028 c = 5.1977 | 83 | 1.4 |
AlN | 3 | a = 4.2018 | 10 | 4.8 | |
ZK51A + 1 wt.% AlN | α-Mg | 95 | a = 3.2058 c = 5.2046 | 84 | 0.8 |
AlN | 5 | a = 4.2634 | 27 | 0.8 | |
ZK51A + 1 wt.% AlN (HT) | α-Mg | 97 | a = 3.2048 c = 5.2091 | 319 | 1.3 |
AlN | 2 | a = 4.5003 | 45 | 1.9 |
Alloys | Hardness, HB | Density, g/cm3 | Grain Size, µm |
---|---|---|---|
ZK51A | 56 ± 2 | 1.79 ± 0.1 | 46 ± 26 |
ZK51A (HT) | 59 ± 1 | 1.79 ± 0.1 | |
ZK51A + 0.1 wt.% AlN | 54 ± 3 | 1.8 ± 0.1 | 53 ± 29 |
ZK51A + 0.1 wt.% AlN (HT) | 55 ± 1 | 1.8 ± 0.1 | |
ZK51A + 0.5 wt.% AlN | 51 ± 2 | 1.8 ± 0.1 | 46 ± 18 |
ZK51A + 0.5 wt.% AlN (HT) | 52 ± 2 | 1.79 ± 0.1 | |
ZK51A + 1 wt.% AlN | 44 ± 4 | 1.78 ± 0.1 | 54 ± 17 |
ZK51A + 1 wt.% AlN (HT) | 50 ± 3 | 1.77 ± 0.1 |
Alloys | σ0.2, MPa | σ, MPa | ε, % | Microhardness, HV |
---|---|---|---|---|
ZK51A (HT) | 63 ± 4 | 151 ± 8 | 6.4 ± 0.4 | 62.5 ± 9.2 |
ZK51A + 0.1 wt.% AlN (HT) | 72 ± 7 | 212 ± 11 | 19.7 ± 0.6 | 59 ± 9.6 |
ZK51A + 0.5 wt.% AlN (HT) | 67 ± 5 | 148 ± 5 | 8 ± 0.7 | 59.5 ± 9.4 |
ZK51A + 1 wt.% AlN (HT) | 86 ± 5 | 174 ± 6 | 13.8 ± 0.3 | 48.6 ± 6.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmadieva, A.A.; Khrustalev, A.P.; Grigoriev, M.V.; Zhukov, I.A.; Vorozhtsov, A.B. Structure, Phase Composition, and Mechanical Properties of ZK51A Alloy with AlN Nanoparticles after Heat Treatment. Metals 2024, 14, 71. https://doi.org/10.3390/met14010071
Akhmadieva AA, Khrustalev AP, Grigoriev MV, Zhukov IA, Vorozhtsov AB. Structure, Phase Composition, and Mechanical Properties of ZK51A Alloy with AlN Nanoparticles after Heat Treatment. Metals. 2024; 14(1):71. https://doi.org/10.3390/met14010071
Chicago/Turabian StyleAkhmadieva, Anastasia A., Anton P. Khrustalev, Mikhail V. Grigoriev, Ilya A. Zhukov, and Alexander B. Vorozhtsov. 2024. "Structure, Phase Composition, and Mechanical Properties of ZK51A Alloy with AlN Nanoparticles after Heat Treatment" Metals 14, no. 1: 71. https://doi.org/10.3390/met14010071
APA StyleAkhmadieva, A. A., Khrustalev, A. P., Grigoriev, M. V., Zhukov, I. A., & Vorozhtsov, A. B. (2024). Structure, Phase Composition, and Mechanical Properties of ZK51A Alloy with AlN Nanoparticles after Heat Treatment. Metals, 14(1), 71. https://doi.org/10.3390/met14010071