Microstructure and Properties of Gradient Ti(C,N)-Based Cermets by Powder Extrusion Additive Manufacturing
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials and Process
2.2. Characterizations
3. Results and Discussion
3.1. Characterization of the Printed Parts
3.2. Effect of Solvent Debinding Parameters on the Printed Parts
3.3. Microstructure and Properties of Gradient Ti(C,N)-Based Cermet
4. Conclusions
- (1)
- The complex gradient structure was built using PEM at 165 °C with a layer height of 200 μm and a printing direction of 45°. The water-soluble polymer component can be effectively dissolved, and specimen size, debinding temperature, and time significantly influence the debinding rate. The density of sintered parts is 97.13% of the theoretical full density obtained at 1500 °C for 1.5 h, with the highest shrinkage (15.7%) occurring along the layer direction.
- (2)
- A black core–gray rim structure transforms into a white core–gray rim structure as the Co and Ni binder phase content increases in the gradient cermets. The crack propagation and initiation path changes at the gradient interface, as the gradient layer with more binder phase has good plastic deformation ability and can absorb more crack propagation energy to close the crack. The fracture exhibits three fracture behaviors, which are tearing of the binder and intergranular and transgranular fracture.
- (3)
- The resulting gradient Ti(C,N)-based cermets demonstrate excellent comprehensive mechanical properties with a hardness of HV20, a fracture toughness of MPa·m1/2, and a bending strength of MPa.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wagri, N.K.; Jain, N.K.; Petare, A.; Das, S.R.; Tharwan, M.Y.; Alansari, A.; Alqahtani, B.; Fattouh, M.; Elsheikh, A. Investigation on the Performance of Coated Carbide Tool during Dry Turning of AISI 4340 Alloy Steel. Materials 2023, 16, 668. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Sarangi, H.; Kumar Mohanty, U. Optimization of process parameters for centrifugal cast single point cutting tools using Grey-Taguchi technique. Mater. Today Proc. 2023, 74, 750–755. [Google Scholar] [CrossRef]
- Necpal, M.; Vozár, M. Assessment of cutting tool wear using a numerical FEM simulation model. J. Phys. Conf. Ser. 2024, 1, 2712. [Google Scholar] [CrossRef]
- Maurya, H.S.; Juhani, K.; Viljus, M.; Sergejev, F.; Kübarsepp, J. Microstructural evolution and mechanical properties of Ti(C,N)–FeCrMo-based green cermets. Ceram. Int. 2024, 50, 8695–8705. [Google Scholar] [CrossRef]
- Li, Y.; Long, H.; Ye, J.; Wang, L. Synergistic enhancement for room and high temperature properties of Ti(C, N)-based cermets by Re and (Cr, La)2(C, N) assistance. J. Phys. Chem. Solids 2024, 192, 112105. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, N.; Du, G.; Zhang, M.; Zhao, X.; Cheng, H.; Wu, J. High-temperature oxidation resistance, mechanical and wear resistance properties of Ti(C,N)-based cermets with Al0.3CoCrFeNi high-entropy alloy as a metal binder. J. Alloys Compd. 2020, 815, 152486. [Google Scholar] [CrossRef]
- Lin, N.; Zheng, Z.; Zhao, L.; Ma, C.; Wang, Z.; He, Y. Influences of ultrafine Ti(C,N) additions on microstructure and properties of micron Ti(C,N)-based cermets. Mater. Chem. Phys. 2019, 230, 197–206. [Google Scholar] [CrossRef]
- Kang, X.; Lin, N.; He, Y.; Zhang, Q.; Zhang, M.; Yan, Y.; Liu, Y. Improvement of microstructure, mechanical properties and cutting performance of Ti(C,N)-based cermets by ultrafine La2O3 additions. Ceram. Int. 2021, 47, 19934–19944. [Google Scholar] [CrossRef]
- Ma, M.; Diao, Y.; Wang, K.; Zhou, X.; Li, G.; Wang, Q. Nanocrystalline microstructure enhanced mechanical properties and cutting performance of WC-10Co-Ti(C, N) gradient cemented carbides. Mater. Charact. 2024, 209, 113708. [Google Scholar] [CrossRef]
- Kainz, C.; Schalk, N.; Saringer, C.; Czettl, C. In-situ investigation of the oxidation behavior of powdered TiN, Ti(C,N) and TiC coatings grown by chemical vapor deposition. Surf. Coat. Technol. 2021, 406, 126633. [Google Scholar] [CrossRef]
- Ji, W.; Zou, B.; Zhang, S.; Xing, H.; Yun, H.; Wang, Y. Design and fabrication of gradient cermet composite cutting tool, and its cutting performance. J. Alloys Compd. 2018, 732, 25–31. [Google Scholar] [CrossRef]
- Wang, B.; Liu, H.; Zhu, H.; Huang, C.; Zhao, B.; Liu, Y. Effect of Ni on mechanical behavior of Al2O3/(W,Ti)C ceramic tool materials at ambient and elevated temperatures. Mater. Res. Express 2019, 6, 045028. [Google Scholar] [CrossRef]
- Gou, Q.; Xiong, J.; Guo, Z.; Liu, J.; Yang, L.; Li, X. Influence of NbC additions on microstructure and wear resistance of Ti(C,N)-based cermets bonded by CoCrFeNi high-entropy alloy. Int. J. Refract. Met. Hard Mater. 2021, 94, 105375. [Google Scholar] [CrossRef]
- de la Obra, A.G.; Sayagués, M.J.; Chicardi, E.; Gotor, F.J. Development of Ti(C,N)-based cermets with (Co,Fe,Ni)-based high entropy alloys as binder phase. J. Alloys Compd. 2020, 814, 152218. [Google Scholar] [CrossRef]
- Lv, J.; Du, Y.; Lou, M.; Xu, K.; Chang, K. Enhancing mechanical properties of Ti(C, N)-based cermets via preparation with (Ti, W)(C, N) multi-component powder. Int. J. Refract. Met. Hard Mater. 2022, 108, 105931. [Google Scholar] [CrossRef]
- Xu, Q.; Ai, X.; Zhao, J.; Gong, F.; Pang, J.; Wang, Y. Effects of metal binder on the microstructure and mechanical properties of Ti(C,N)-based cermets. J. Alloys Compd. 2015, 644, 663–672. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, X.Q.; Zhang, Y.H.; Chen, H.; Tu, M.J.; Deng, L.; Zou, J.P. The effect of Co particle structures on the mechanical properties and microstructure of TiCN-based cermets. Mater. Sci. Eng. A 2016, 675, 164–170. [Google Scholar] [CrossRef]
- Wan, W.; Wang, J.; Liang, M.; Fan, K.; Wang, Z.; Li, Y. Fracture behaviors of Ti(C, N)-based cermets with different contents of metal binder. Ceram. Int. 2022, 48, 32399–32408. [Google Scholar] [CrossRef]
- Dios, M.; Kraleva, I.; González, Z.; Alvaredo, P.; Ferrari, B.; Gordo, E.; Bermejo, R. Mechanical characterization of Ti(C,N)-based cermets fabricated through different colloidal processing routes. J. Alloys Compd. 2018, 732, 806–817. [Google Scholar] [CrossRef]
- Xu, Q.; Ai, X.; Zhao, J.; Qin, W.; Wang, Y.; Gong, F. Corrigendum to “Comparison of Ti(C,N)-based cermets processed by hot-pressing sintering and conventional pressureless sintering” [Journal of Alloys and Compounds 619 (2015) 538–543]. J. Alloys Compd. 2017, 710, 880. [Google Scholar] [CrossRef]
- Chu, S.; Liu, G.; Xiong, H.; Li, Z.; Zhou, K. High-quality Ti(C,N)-based cermets via solid-state nitrogen-pressure sintering: Influence of the sintering atmosphere. Int. J. Refract. Met. Hard Mater. 2020, 92, 105291. [Google Scholar] [CrossRef]
- Xiong, Z.; Ye, J.; Liu, Y.; Yang, X.; Cao, Q. Study on the phase evolution, microstructure and densification behavior of (Ti,M)(C,N)-based cermets. Mater. Chem. Phys. 2020, 240, 122249. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, Y.; Li, Y.; Zhou, W.; Zhang, G.; Zhang, J.; Xiong, W. Microstructure and performance of graded Ti(C, N)-based cermets modified by nitriding treatment during different sintering stages. Int. J. Refract. Met. Hard Mater. 2017, 62, 1–8. [Google Scholar] [CrossRef]
- Ji, W.; Zou, B.; Liu, Y.; Huang, C.; Guo, P. Frictional behavior and wear resistance performance of gradient cermet composite tool materials sliding against hard materials. Ceram. Int. 2017, 43, 7816–7826. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, X.; Fang, Y.; Zhang, M. The production of in situ (Mo,Ti)(C,N)-based cermets without a core/rim structure by reaction hot pressing: Formation mechanism and mechanical properties. Ceram. Int. 2022, 48, 37275–37286. [Google Scholar] [CrossRef]
- Chen, M.; Xiong, H.; Zhang, L.; Kang, X.; Li, Z.; Zhou, K. Complex-shaped TiC/Ti(C,N)-based cermet prepared via rheological press molding using highly-filled granular feedstock. Int. J. Refract. Met. Hard Mater. 2023, 115, 106281. [Google Scholar] [CrossRef]
- Yun, H.; Zou, B.; Wang, J. Effects of sintering temperature and nano Ti(C,N) on the microstructure and mechanical properties of Ti(C,N) cermets cutting tool materials with low Ni-Co. Mater. Sci. Eng. A 2017, 705, 98–104. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.; Dong, Z.; Zhou, X.; Wang, X.; Zhang, B.; Meng, C. Microstructure and Mechanical Properties of Multicomponent Metal Ti(C,N)-Based Cermets. Metals 2020, 10, 927. [Google Scholar] [CrossRef]
- Aramian, A.; Sadeghian, Z.; Narimani, M.; Razavi, N.; Berto, F. A review on the microstructure and properties of TiC and Ti(C,N) based cermets. Int. J. Refract. Met. Hard Mater. 2023, 115, 106320. [Google Scholar] [CrossRef]
- Ziaee, M.; Crane, N.B. Binder jetting: A review of process, materials, and methods. Addit. Manuf. 2019, 28, 781–801. [Google Scholar] [CrossRef]
- Lengauer, W.; Duretek, I.; Fürst, M.; Schwarz, V.; Gonzalez-Gutierrez, J.; Schuschnigg, S.; Kukla, C.; Kitzmantel, M.; Neubauer, E.; Lieberwirth, C.; et al. Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components. Int. J. Refract. Met. Hard Mater. 2019, 82, 141–149. [Google Scholar] [CrossRef]
- Lotfizarei, Z.; Mostafapour, A.; Barari, A.; Jalili, A.; Patterson, A.E. Overview of debinding methods for parts manufactured using powder material extrusion. Addit. Manuf. 2023, 61, 103335. [Google Scholar] [CrossRef]
- Yi, Z.; Shen, T.; Xiong, H.; Kang, X.; Zhang, L.; Zhou, K. Strong and densified 3D metal-ceramic composite with strengthened layer structure by material extrusion additive manufacturing. Addit. Manuf. 2024, 84, 104136. [Google Scholar] [CrossRef]
- Aramian, A.; Razavi, N.; Sadeghian, Z.; Berto, F. A review of additive manufacturing of cermets. Addit. Manuf. 2020, 33, 101130. [Google Scholar] [CrossRef]
- Bankapalli, N.K.; Gupta, V.; Saxena, P.; Bajpai, A.; Lahoda, C.; Polte, J. Filament fabrication and subsequent additive manufacturing, debinding, and sintering for extrusion-based metal additive manufacturing and their applications: A review. Compos. Part B Eng. 2023, 264, 110915. [Google Scholar] [CrossRef]
- GB/T 6569-2006; Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Flexural Strength of Monolithic Ceramics at Room Temperature. Standards Press of China: Beijing, China, 2006. Available online: https://www.renrendoc.com/paper/240373733.html?aggId=e9WGHZszKySN_ZumDVj8aFE (accessed on 19 January 2024).
- Li, M.; Bai, L.; Jiang, S.; Sillanpää, M.; Huang, Y.; Liu, Y. Electrocatalytic transformation of oxygen to hydroxyl radicals via three-electron pathway using nitrogen-doped carbon nanotube-encapsulated nickel nanocatalysts for effective organic decontamination. J. Hazard. Mater. 2023, 452, 131352. [Google Scholar] [CrossRef]
- Zaini, M.S.M.; Arshad, M.; Syed-Hassan, S.S.A. Adsorption Isotherm and Kinetic Study of Methane on Palm Kernel Shell-Derived Activated Carbon. J. Bioresour. Bioprod. 2023, 8, 66–77. [Google Scholar] [CrossRef]
- Jiang, S.; Xie, M.; Jin, L.; Ren, Y.; Zheng, W.; Ji, S.; Liu, Y. New insights into electrocatalytic singlet oxygen generation for effective and selective water decontamination. Chin. Chem. Lett. 2024; in press. 110293. [Google Scholar] [CrossRef]
- Shahraki, H.S.; Bushra, R.; Shakeel, N.; Ahmad, A.; Ahmad, M.; Ritzoulis, C. Papaya peel waste carbon dots/reduced graphene oxide nanocomposite: From photocatalytic decomposition of methylene blue to antimicrobial activity. J. Bioresour. Bioprod. 2023, 8, 162–175. [Google Scholar] [CrossRef]
- Yan, S.; Chu, S.; Xu, H.; Zhu, H.; Chen, H.; Gao, W.; Zhang, S. Study on adsorption performance of biochar with different particle size on phenol and bio-oil. J. For. Eng. 2023, 8, 95–101. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Q.; Peng, F.; Hao, X. Preparation and performance of oil-water separation membrane based on copy paper. J. For. Eng. 2023, 8, 96–103. [Google Scholar]
- Jiang, S.; Liu, H.; Zhang, W.; Lu, Y. Bioanode boosts efficacy of chlorobenzenes-powered microbial fuel cell: Performance, kinetics, and mechanism. Bioresour. Technol. 2024, 405, 130936. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; He, W.; Zhou, P.; Wei, B.; Wang, R.; Liang, S.; Ji, Q. Preparation of wood aerogel membrane and adsorption performance on Cu2+ in waste water. J. For. Eng. 2023, 8, 113–120. [Google Scholar] [CrossRef]
Ti(C,N) [wt.%] | Co [wt.%] | Ni [wt.%] | WC [wt.%] | MoC [wt.%] | TaC [wt.%] | NbC [wt.%] | CrC [wt.%] | |
---|---|---|---|---|---|---|---|---|
Layer 1 | 66.5 | 9 | 9 | 5 | 5 | 4 | 1 | 0.5 |
Layer 2 | 58 | 14 | 14 | 5 | 5 | 3 | 1 | 0 |
Layer 3 | 50 | 20 | 20 | 3 | 4 | 2.5 | 0 | 0.5 |
Ti, C, N [wt.%] | Co [wt.%] | Ni [wt.%] | W [wt.%] | Mo [wt.%] | |
---|---|---|---|---|---|
Layer 1-A | 100 | 0 | 0 | 0 | 0 |
Layer 2-B | 77.04 | 0 | 0 | 12.76 | 10.2 |
Layer 3-C | 81.88 | 0 | 0 | 9.51 | 8.61 |
Layer 3-D | 45.63 | 27.22 | 23.31 | 2.46 | 1.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, L.; Chen, T.; Qin, Q.; Peng, Y.; Jiang, S. Microstructure and Properties of Gradient Ti(C,N)-Based Cermets by Powder Extrusion Additive Manufacturing. Metals 2024, 14, 1161. https://doi.org/10.3390/met14101161
Long L, Chen T, Qin Q, Peng Y, Jiang S. Microstructure and Properties of Gradient Ti(C,N)-Based Cermets by Powder Extrusion Additive Manufacturing. Metals. 2024; 14(10):1161. https://doi.org/10.3390/met14101161
Chicago/Turabian StyleLong, Luping, Teng Chen, Qin Qin, Yingbiao Peng, and Shaohua Jiang. 2024. "Microstructure and Properties of Gradient Ti(C,N)-Based Cermets by Powder Extrusion Additive Manufacturing" Metals 14, no. 10: 1161. https://doi.org/10.3390/met14101161
APA StyleLong, L., Chen, T., Qin, Q., Peng, Y., & Jiang, S. (2024). Microstructure and Properties of Gradient Ti(C,N)-Based Cermets by Powder Extrusion Additive Manufacturing. Metals, 14(10), 1161. https://doi.org/10.3390/met14101161