Formation of the Interlock Morphology and Its Role in Refill Friction Stir Spot Welding of Aluminum Alloy to Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- (1)
- The steel/Al refill friction stir spot welded joints exhibited excellent tensile-shear properties. All the specimens were fractured at the base metal (BM) of the Al alloy, exhibiting a button fracture (BF) mode. The maximum tensile-shear load of the steel/Al refill friction stir spot welded joint was as high as 4.3 kN. A significantly higher microhardness of the stir zone (SZ) than that of the steel BM could be detected in the steel side. The microhardness of the sleeve-plunging zone was higher than that of the pin-plunging zone, indicating that more drastic stirring was produced in this zone.
- (2)
- The steel/Al refill friction stir spot welded joints were successfully bonded with the interface, without any obvious welding defects. The flat and continuous intermetallic compound (IMC) layer could be observed at the interface, and hook-and-vortex-like structures could also be detected.
- (3)
- The bonding condition in the sleeve-plunging zone crucially determined the mechanical properties of the steel/Al refill friction stir spot welded joint. A uniform Fe-Al IMC layer was found in the sleeve-plunging zone, indicating the formation of effective metallurgical bonding in this zone. In particular, hook-and-vortex-like structures formed by the plunging of the sleeve could also be observed. These characteristic structures produced the mechanical interlock effect, leading to the qualified mechanical bonding in the zone of sleeve plunging.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Xu, J. Advanced lightweight materials for Automobiles: A review. Mater. Des. 2022, 221, 110994. [Google Scholar] [CrossRef]
- Goede, M.; Stehlin, M.; Rafflenbeul, L.; Kopp, G.; Beeh, E. Super Light Car lightweight construction thanks to a multi-material design and function integration. Eur. Transp. Res. Rev. 2008, 1, 5–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Lai, X.; Zhu, P.; Wang, W. Lightweight design of automobile component using high strength steel based on dent resistance. Mater. Des. 2006, 27, 64–68. [Google Scholar] [CrossRef]
- He, Z.; Zhou, D.; Liu, A.; Zhou, S.; Du, X.; Wang, X.; Liu, J. An investigation on rivet plug laser welding of hybrid joints between high-strength steel and aluminum alloy. Opt. Laser Technol. 2023, 164, 109470. [Google Scholar] [CrossRef]
- Uematsu, Y.; Kakiuchi, T.; Tozaki, Y.; Kojin, H. Comparative study of fatigue behaviour in dissimilar Al alloy/steel and Mg alloy/steel friction stir spot welds fabricated by scroll grooved tool without probe. Sci. Technol. Weld. Join. 2012, 17, 348–356. [Google Scholar] [CrossRef]
- Qiu, R.; Iwamoto, C.; Satonaka, S. Interfacial microstructure and strength of steel/aluminum alloy joints welded by resistance spot welding with cover plate. J. Mater. Process. Technol. 2009, 209, 4186–4193. [Google Scholar] [CrossRef]
- Dong, W.; Pan, H.; Lei, M.; Ding, K.; Gao, Y. Zn penetration and its coupled interaction with the grain boundary during the resistance spot welding of the QP980 steel. Scr. Mater. 2022, 218, 114832. [Google Scholar] [CrossRef]
- Li, B.; Hu, T.; Zhou, J.; Pan, H.; Ding, K.; Wu, T.; Gao, Y. Interfacial microstructure characteristics and failure mechanism of the laser welding-brazing steel-Al joints with various welding parameters. J. Mater. Res. Technol. 2024, 31, 2498–2507. [Google Scholar] [CrossRef]
- Xu, P.; Hua, X.; Shen, C.; Huang, Y.; Li, F.; Zhang, Y. Dynamic growth model of Fe2Al5 during dissimilar joining of Al to steel using the variable polarity cold metal transfer (VP-CMT). J. Mater. Process. Technol. 2022, 302, 117477. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, B.; Zhang, X.; Sun, T.; Li, G.; Cui, J. Mechanical properties and interfacial microstructures of magnetic pulse welding joints with aluminum to zinc-coated steel. Mater. Sci. Eng. A 2020, 788, 139425. [Google Scholar] [CrossRef]
- Lee, W.; Schmuecker, M.; Mercardo, U.; Biallas, G.; Jung, S. Interfacial reaction in steel–aluminum joints made by friction stir welding. Scr. Mater. 2006, 55, 355–358. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.; Liu, B.; Zhu, Z.; Li, Y.; Chen, H. Interface characterization and tensile performance of deep-penetration welding-brazing of thick aluminium/steel butt joints. Mater. Charact. 2022, 186, 111811. [Google Scholar] [CrossRef]
- Ma, Y.; Dong, H.; Li, P.; Wu, B.; Wu, W.; Qian, W.; Wang, B. Control of various Zn-based weld seam/steel interface structures in AA5083/FH36 steel welded joint. Mater. Des. 2023, 230, 111971. [Google Scholar] [CrossRef]
- Li, C.; Fan, D.; Yu, X.; Huang, J. Residual stress and welding distortion of Al/steel butt joint by arc-assisted laser welding-brazing. T. Nonferr. Metal. Soc. 2019, 29, 692–700. [Google Scholar] [CrossRef]
- Ding, K.; Hu, T.; Wu, T.; Dong, W.; Zhu, P.; Wang, S.; Pan, H.; Gao, Y. Role of the position of the laser spot in the failure transition during the tensile test for the laser welding-brazing of galvanized CRRA1000 steel to 5754 aluminum alloy in an overlapped joint. Mater. Sci. Eng. A 2023, 880, 145314. [Google Scholar] [CrossRef]
- Wan, Z.; Wang, H.; Chen, N.; Wang, M.; Carlson, B. Characterization of intermetallic compound at the interfaces of Al-steel resistance spot welds. J. Mater. Process. Technol. 2017, 242, 12–23. [Google Scholar] [CrossRef]
- Pan, B.; Sun, H.; Shang, S.; Banu, M.; Wang, P.; Carlson, B.; Liu, Z.; Li, J. Understanding formation mechanisms of intermetallic compounds in dissimilar Al/steel joint processed by resistance spot welding. J. Manuf. Process. 2022, 83, 212–222. [Google Scholar] [CrossRef]
- Sun, J.; Yan, Q.; Gao, W.; Huang, J. Investigation of laser welding on butt joints of Al/steel dissimilar materials. Mater. Des. 2015, 83, 120–128. [Google Scholar] [CrossRef]
- Ma, H.; Qin, G.; Ao, Z.; Wang, L. Interfacial microstructure and shear properties of aluminum alloy to steel fusion-brazed welded joint. J. Mater. Process. Technol. 2018, 252, 595–603. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, J.; Shen, Z.; Ma, H. Microstructure and mechanical properties of simultaneously explosively-welded Steel/Cu pipes and Al/Cu pipe/rod. J. Manuf. Process. 2019, 47, 244–253. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, J.; Chen, Y.; Zhang, L.; Yin, L.; Zhang, T.; Wang, S. Interfacial microstructure and bonding mechanism of the Al/Ti joint by magnetic pulse welding. Scr. Mater. 2022, 210, 114434. [Google Scholar] [CrossRef]
- Yang, X.; Ma, S.; Chu, Q.; Peng, C.; Su, Y.; Xiao, B.; Guo, Z.; Ma, T.; Li, W. Investigation of microstructure and mechanical properties of GH4169 superalloy joint produced by linear friction welding. J. Mater. Res. Technol. 2023, 24, 8373–8390. [Google Scholar] [CrossRef]
- Li, S.; Vajragupta, N.; Biswas, A.; Tang, W.; Wang, H.; Kostka, A.; Yang, X.; Hartmaier, A. Effect of microstructure heterogeneity on the mechanical properties of friction stir welded reduced activation ferritic/martensitic steel. Scr. Mater. 2022, 207, 114306. [Google Scholar] [CrossRef]
- Piccini, J.; Svoboda, H. Tool geometry optimization in friction stir spot welding of Al-steel joints. J. Manuf. Process. 2017, 26, 142–154. [Google Scholar] [CrossRef]
- Hassanifard, S.; Rash Ahmadi, S.; Mohammad Pour, M. Weld arrangement effects on the fatigue behavior of multi friction stir spot welded joints. Mater. Des. 2013, 44, 291–302. [Google Scholar] [CrossRef]
- Zhou, L.; Li, G.; Zhang, R.; Zhou, W.; He, W.; Huang, Y.; Song, X. Microstructure evolution and mechanical properties of friction stir spot welded dissimilar aluminum-copper joint. J. Alloy Compd. 2019, 775, 372–382. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, J.; Wan, L.; Meng, X.; Liu, H.; Li, H. Self-riveting friction stir lap welding of aluminum alloy to steel. Mater. Lett. 2016, 185, 181–184. [Google Scholar] [CrossRef]
- Piccini, J.; Svoboda, H. Effect of pin length on Friction Stir Spot Welding (FSSW) of dissimilar Aluminum-steel joints. Procedia. Mater. Sci. 2015, 9, 504–513. [Google Scholar] [CrossRef]
- Ding, Y.; Shen, Z.; Gerlich, A. Refill friction stir spot welding of dissimilar aluminum alloy and AlSi coated steel. J. Manuf. Process. 2017, 30, 353–360. [Google Scholar] [CrossRef]
- Li, P.; Chen, S.; Dong, H.; Ji, H.; Li, Y.; Guo, X.; Yang, G.; Zhang, X.; Han, X. Interfacial microstructure and mechanical properties of dissimilar aluminum/steel joint fabricated via refilled friction stir spot welding. J. Manuf. Process. 2020, 49, 385–396. [Google Scholar] [CrossRef]
- Ogura, T.; Saito, Y.; Nishida, T.; Nishida, H.; Yoshida, T.; Omichi, N.; Fujimoto, M.; Hirose, A. Partitioning evaluation of mechanical properties and the interfacial microstructure in a friction stir welded aluminum alloy/stainless steel lap joint. Scr. Mater. 2012, 66, 531–534. [Google Scholar] [CrossRef]
- Rest, C.; Jacques, P.; Simar, A. On the joining of steel and aluminium by means of a new friction melt bonding process. Scr. Mater. 2014, 77, 25–28. [Google Scholar] [CrossRef]
- Tanaka, T.; Morishige, T.; Hirata, T. Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys. Scr. Mater. 2009, 61, 756–759. [Google Scholar] [CrossRef]
- Chen, Z.; Yazdanian, S.; Littlefair, G. Effects of tool positioning on joint interface microstructure and fracture strength of friction stir lap Al-to-steel welds. J. Mater. Sci. 2012, 48, 2624–2634. [Google Scholar] [CrossRef]
- Bozzi, S.; Helbert-Etter, A.; Baudin, T.; Criqui, B.; Kerbiguet, J. Intermetallic compounds in Al 6016/IF-steel friction stir spot welds. Mater. Sci. Eng. A 2010, 527, 4505–4509. [Google Scholar] [CrossRef]
- Coelho, R.; Kostka, A.; Santos, J.; Kaysser-Pyzalla, A. Friction-stir dissimilar welding of aluminium alloy to high strength steels: Mechanical properties and their relation to microstructure. Mater. Sci. Eng. A 2012, 556, 175–183. [Google Scholar] [CrossRef]
- Ikumapayi, O.; Akinlabi, E. Recent Advances In Keyhole Defects Repairs Via Refilling Friction Stir Spot Welding. Mater. Today Proc. 2019, 18, 2201–2208. [Google Scholar] [CrossRef]
- Lin, J.; Ma, N.; Lei, Y.; Murakawa, H. Shear strength of CMT brazed lap joints between aluminum and zinc-coated steel. J. Mater. Process. Technol. 2013, 213, 1303–1310. [Google Scholar] [CrossRef]
- Huang, R.; Tan, C.; Sun, Y.; Gong, X.; Wu, L.; Chen, B.; Zhao, H.; Song, X. Influence of processing window on laser welding-brazing of Al to press-hardened 22MnB5 steel. Opt. Laser Technol. 2021, 133, 106566. [Google Scholar] [CrossRef]
- Shen, Z.; Ding, Y.; Chen, J.; Amirkhiz, B.; Wen, J.; Fu, L.; Gerlich, A. Interfacial bonding mechanism in Al/coated steel dissimilar refill friction stir spot welds. J. Mater. Sci. Technol. 2019, 35, 1027–1038. [Google Scholar] [CrossRef]
- Lee, S.; Baek, S.; Lee, S.; Chen, C.; Nishijima, M.; Suganuma, K.; Utsunomiya, H.; Ma, N.; Yu, H.; Kim, D. Driving forces of solid-state Cu-to-Cu direct bonding suppressing the work-hardening loss by refill friction stir spot welding. Mater. Sci. Eng. A 2024, 915, 147178. [Google Scholar] [CrossRef]
- Geyer, M.; Vidal, V.; Pottier, T.; Boher, C.; Rezai-Aria, F. Investigations on the material flow and the role of the resulting hooks on the mechanical behaviour of dissimilar friction stir welded Al2024-T3 to Ti-6Al-4V overlap joints. J. Mater. Process. Technol. 2021, 292, 117057. [Google Scholar] [CrossRef]
Base Metals | Mg | Si | Cu | Mn | Cr | Ti | Zn | C | Al | Fe |
---|---|---|---|---|---|---|---|---|---|---|
6061-T6 | 1.0 | 0.6 | 0.2 | <0.15 | 0.1 | <0.15 | 0.4 | - | Bal. | <0.7 |
B410LA | - | 0.15 | - | 1.6 | 0.03 | 0.02 | - | 0.14 | 0.04 | Bal. |
Materials | Tensile Strength (MPa) | Yield Strength (MPa) | Elongation (%) | Microhardness (HV) |
---|---|---|---|---|
6061 | 310 | 276 | 13 | 75 |
B410LA | ≥590 | 410–560 | ≥17 | 180 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, T.; Li, B.; Li, Z.; Ding, K.; Wu, T.; Pan, H.; Gao, Y. Formation of the Interlock Morphology and Its Role in Refill Friction Stir Spot Welding of Aluminum Alloy to Steel. Metals 2024, 14, 1209. https://doi.org/10.3390/met14111209
Hu T, Li B, Li Z, Ding K, Wu T, Pan H, Gao Y. Formation of the Interlock Morphology and Its Role in Refill Friction Stir Spot Welding of Aluminum Alloy to Steel. Metals. 2024; 14(11):1209. https://doi.org/10.3390/met14111209
Chicago/Turabian StyleHu, Tianhan, Bolong Li, Zhen Li, Kai Ding, Tianhai Wu, Hua Pan, and Yulai Gao. 2024. "Formation of the Interlock Morphology and Its Role in Refill Friction Stir Spot Welding of Aluminum Alloy to Steel" Metals 14, no. 11: 1209. https://doi.org/10.3390/met14111209
APA StyleHu, T., Li, B., Li, Z., Ding, K., Wu, T., Pan, H., & Gao, Y. (2024). Formation of the Interlock Morphology and Its Role in Refill Friction Stir Spot Welding of Aluminum Alloy to Steel. Metals, 14(11), 1209. https://doi.org/10.3390/met14111209