State-of-the-Art Review of the Simulation of Dynamic Recrystallization
Abstract
:1. Introduction
- (1)
- Mean field models (statistical average results)
- (2)
- Full field models (Microstructure morphology)
2. Mean Field Methods
2.1. Empirical Models
2.2. Internal State Variable (ISV) Models
3. Full Field Methods
3.1. Monte Carlo Model
- (1)
- Discretization: Divide the analysis domain into lattice points.
- (2)
- Initial conditions: Assign initial parameters, such as grain orientation and dislocation density.
- (3)
- Monte Carlo steps:
- a.
- Select a site.
- b.
- Calculate energy.
- c.
- Update the state.
- d.
- Repeat the process.
- e.
- Initiate the nucleation of new grains.
- f.
- Allow for the growth and coarsening of grains.
- (4)
- Boundary conditions: Apply periodic boundary conditions to the simulation.
- (5)
- Postprocessing: Output and visualize the simulation results.
3.2. Vertex Model
- (1)
- Initialization: Define the initial grain structure using vertices and their connections. Assign dislocation density and other microstructural properties within each grain.
- (2)
- Define energy functions: Establish the grain boundary energy function based on the boundary length and the misorientation angle between adjacent grains. Additionally, bulk energy functions related to dislocation density and other internal stresses should be established. Thus, total energy covering the two energy terms mentioned above is formed.
- (3)
- Vertex movements: Randomly move the vertices, calculate energy changes, and accept or reject these moves based on the Metropolis criterion.
- (4)
- Grain nucleation and growth: Introduce new grains at high-energy sites and move vertices to reduce the total energy while handling topological changes. Implement either periodic or fixed boundary conditions.
- (5)
- Time stepping: Increment the time, repeat the process, and check for convergence.
- (6)
- Output: Record and analyze the microstructural data, perform statistical analyses, and visualize the results.
3.3. Cellular Automaton (CA) Model
- (1)
- Discretization: Divide the simulation domain into cells and set initial conditions, including dislocation density and grain orientation for each cell, etc.
- (2)
- Transition rules: Define the transition rules and determine the energy states and state variables for the cells.
- (3)
- Nucleation and growth: Introduce new grains at high-energy sites based on nucleation criteria. Allow the recrystallized grains to grow by converting adjacent cells.
- (4)
- Neighborhood and updates: Establish a neighborhood for each cell and create rules for state changes. Randomly select cells, calculate their energy, and update their states based on a probabilistic approach.
- (5)
- Time increment and convergence: Increment the time, repeat the process, and check for convergence. Apply periodic or fixed boundary conditions as needed.
- (6)
- Results output: Record and analyze the microstructure data, perform statistical analyses, and visualize the results.
3.4. Phase-Field (PF) Model
- (1)
- Initialization: Define the simulation domain and set initial conditions. Establish order parameters to distinct the grain and grain boundary.
- (2)
- Defining free energy functional: Including bulk and gradient energy density functions.
- (3)
- Building governing equations: Derive and formulate PS and coupled evolution equations (the time-dependent Ginzburg–Landau equations). These equations minimize the total free energy of the system.
- (4)
- Numerical implementation: Discretize the governing PDEs using appropriate numerical methods, such as finite difference, finite element, or spectral methods. Choose a time integration scheme.
- (5)
- Nucleation and growth: Periodically introduce new grains by altering the order parameters at nucleation sites.
- (6)
- Boundary conditions: Apply periodic or fixed boundary conditions.
- (7)
- Time stepping: Increment time, solve the equations, and check for convergence.
- (8)
- Output: Record, analyze, and visualize the microstructure data.
3.5. Level-Set (LS) Model
- (1)
- Initialization: Define the simulation domain and set initial conditions.
- (2)
- Define level set functions: Establish level set functions to represent grain boundaries. Use multiple level set functions to represent multiple grains in the microstructure.
- (3)
- Define energy functional: Define the grain boundary energy proportional to the curvature of the grain boundary and bulk energy related to dislocation density and stored energy within the grains.
- (4)
- Governing equations: Derive and formulate the level set evolution equations, that is, the Hamilton–Jacobi-type PDE (Equation (21)) that governs the evolution of the level set function. Calculate the normal velocity as a function of local curvature, stored energy, and other relevant parameters.
- (5)
- Numerical implementation: Discretize the equations and choose appropriate numerical methods (such as finite difference or finite element methods).
- (6)
- Nucleation and growth: Introduce new grains based on nucleation criteria. Periodically introduce new level set functions to represent new grains at nucleation sites.
- (7)
- Boundary conditions: Apply periodic or fixed boundary conditions.
- (8)
- Time stepping: Increment time, solve the equations, and check for convergence.
- (9)
- Output: Record, analyze, and visualize the microstructure data.
4. Multi-Physics Coupling Models
4.1. Coupled with Crystal Plasticity
4.2. Coupled with Precipitation
5. Summary and Outlook
- (1)
- Combined with FE simulation, the mean field method rapidly predicts the average size and volume fraction distribution of the recrystallized grain size. Though the physical mechanisms are rarely considered in the model, the mean field method plays an irreplaceable role in recrystallization simulation, especially when it is necessary to predict the overall recrystallization trend of the workpiece at a larger scale. Compared to empirical models, ISV models have broader development and application prospects, especially coupled with the full field model.
- (2)
- The MC model uses random sampling techniques to simulate the evolution of microstructures based on energy minimization principles. Simplified rules for grain boundary movements and virtual time scales make MC difficult to model actual processing. Vertex model effectively captures the evolution of grain structures by representing grain boundaries as dynamic vertices. However, it can be limited by assumptions about isotropy and simplicity in boundary dynamics. CA models handle complex phenomena like nucleation, growth, and impingement of grains straightforwardly. So, it is most widely applied in recrystallization simulation among all full-field methods. PF models are proper to simulate complex microstructural evolutions with high accuracy, but have high computational expenses. PF models are a powerful tool for simulating not only recrystallization but also other phase transformations in metals and alloys. Thus, PF can be used in multi-physical coupling models. Developed for interface tracking problems, the level set method became relevant for recrystallization simulations due to its ability to handle evolving boundaries and complex geometries. LS represents interfaces implicitly and could naturally accommodate changes in topology, such as the merging and splitting of grains. Compared to other full-field methods, LS has been newly applied in recrystallization simulation, but its high computational costs hinder its development to some extent.
- (3)
- Coupled multi-physics models were recently developed, coupling recrystallization simulations with other physical phenomena (local inhomogeneous deformation, phase transformation, precipitation, etc.) Coupled models provide a more comprehensive understanding of the recrystallization process under various conditions, which will become the tendency of the recrystallization simulations.
- (4)
- The high computational demands of the full field method are supposed to be relieved by new algorithms, for example, the utilizing of graphic processing unit (GPU) [82,84,85,86] and machine learning (ML). Surrogate modeling is an important ML and has been applied in microstructure analysis, for accurate and fast predictions of recrystallization and grain growth [192,193]. New research involving the integration of recrystallization with ML has been reported [194,195,196,197,198].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, J.; Banu, M. Opportunities and Challenges in Metal Forming for Lightweighting: Review and Future Work. J. Manuf. Sci. Eng. 2020, 142, 110813. [Google Scholar] [CrossRef]
- Huang, K.; Logé, R.E. A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 2016, 111, 548–574. [Google Scholar] [CrossRef]
- Doherty, R.D.; Hughes, D.A.; Humphreys, F.J.; Jonas, J.J.; Jensen, D.J.; Kassner, M.E.; King, W.E.; McNelley, T.R.; McQueen, H.J.; Rollett, A.D. Current issues in recrystallization: A review. Mater. Sci. Eng. A 1997, 238, 219–274. [Google Scholar] [CrossRef]
- Mirzadeh, H. Grain refinement of magnesium alloys by dynamic recrystallization (DRX): A review. J. Mater. Res. Technol. 2023, 25, 7050–7077. [Google Scholar] [CrossRef]
- Idell, Y.; Wiezorek, J.; Facco, G.; Kulovits, A.; Shankar, M.R. Geometric dynamic recrystallization of austenitic stainless steel through linear plane-strain machining. Philos. Mag. 2020, 100, 1102–1128. [Google Scholar] [CrossRef]
- Guan, D.; Rainforth, W.M.; Ma, L.; Wynne, B.; Gao, J. Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy. Acta Mater. 2017, 126, 132–144. [Google Scholar] [CrossRef]
- Peng, R.; Xu, C.; Li, Y.; Zhong, S.; Cao, X.; Ding, Y. Multiple-twinning induced recrystallization and texture optimization in a differential-temperature-rolled AZ31B magnesium alloy with excellent ductility. Mater. Res. Lett. 2022, 10, 318–326. [Google Scholar] [CrossRef]
- Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J.J. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 2014, 60, 130–207. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, H.; Zhang, P.; Ji, J.; Wang, T.; Wang, Y. Dynamic Recrystallization Mechanisms of As-Extruded GH4151 Alloy during Hot Deformation. Adv. Eng. Mater. 2023, 25, 2300795. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, B.; Ning, Y.; Fu, M.W. Mechanisms of DRX nucleation with grain boundary bulging and subgrain rotation during the hot working of nickel-based superalloys with columnar grains. J. Alloys Compd. 2019, 786, 636–647. [Google Scholar] [CrossRef]
- Fang, Y.; Gao, Z.; Bai, W.; Sun, P. Microstructural characterization of dynamic recrystallization in hot deformed LDX2101. Int. J. Mater. Res. 2018, 109, 485–493. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Q.; Chen, Z.; Wu, X.; Liu, H.; Wang, Z. Recrystallization Mechanism and Processing Map of 18CrNiMo7-6 Alloy Steel during Hot Deformation. Metals 2022, 12, 838. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, B.; Yu, H.; Ning, Y. Nucleation Mechanism of Discontinuous Dynamic Recrystallization with Restrained Grain Boundary Sliding. Met. Mater. Int. 2020, 27, 5476–5479. [Google Scholar] [CrossRef]
- McQueen, H.J. Development of dynamic recrystallization theory. Mater. Sci. Eng. A 2004, 387–389, 203–208. [Google Scholar] [CrossRef]
- Ye, X.; Suo, Z.; Heng, Z.; Chen, B.; Wei, Q.; Umeda, J.; Kondoh, K.; Shen, J. An in-situ study of static recrystallization in Mg using high temperature EBSD. J. Magnes. Alloys 2024, 12, 1419–1430. [Google Scholar] [CrossRef]
- Guo, B.; Ray, R.K.; Yoshida, S.; Bai, Y.; Tsuji, N. In-situ observations of static recrystallization and texture formation in a cold-rolled CoCrFeMnNi high entropy alloy. Scr. Mater. 2022, 215, 114706. [Google Scholar] [CrossRef]
- Lee, S.; Berman, T.D.; Yildirim, C.; Detlefs, C.; Allison, J.E.; Bucsek, A. Multiscale in-situ characterization of static recrystallization using dark-field X-ray microscopy and high-resolution X-ray diffraction. Sci. Rep. 2024, 14, 6241. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Zheng, J.H.; Yardley, V.A.; Shi, Z.; Lin, J. A review of microstructural evolution and modelling of aluminium alloys under hot forming conditions. Metals 2020, 10, 1516. [Google Scholar] [CrossRef]
- Ashby, M.F.; Humphreys, F.J.; Sellar, C.M.; Shercliff, H.R.; Stowell, M.J.; Shercliff, H.R. Modelling of microstructure evolution in hot deformation. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1999, 357, 1621–1643. [Google Scholar]
- Maire, L. Full Field and Mean Field Modeling of Dynamic and Post-Dynamic Recrystallization in 3D—Application to 304L Steel. Ph. D. Thesis, Université Paris Sciences et Lettres, Paris, France, 2018. [Google Scholar]
- Fanfoni, M.; Tomellini, M. The Johnson-Mehl-Avrami-Kohnogorov model: A brief review. Il Nuovo Cimento D 1998, 20, 1171–1182. [Google Scholar] [CrossRef]
- Shirzad, K.; Viney, C. A critical review on applications of the Avrami equation beyond materials science. J. R. Soc. Interface 2023, 20, 20230242. [Google Scholar] [CrossRef] [PubMed]
- Zyguła, K.; Cichocki, K.; Kowalczyk, K.; Puławski, M.; Korpała, G.; Wojtaszek, M.; Jabłońska, M.; Prahl, U. Microstructure Prediction of 80MnSi8-6 Steel After Hot Deformation Based on Dynamic Recrystallization Kinetics and FEM Simulation. JOM 2024, 76, 5193–5209. [Google Scholar] [CrossRef]
- Bzowski, K.; Kitowski, J.; Kuziak, R.; Uranga, P.; Gutierrez, I.; Jacolot, R.; Pietrzyk, M. Development of the material database for the VirtRoll computer system dedicated to design of an optimal hot strip rolling technology. Comput. Methods Mater. Sci. 2017, 17, 225–246. [Google Scholar] [CrossRef]
- Baron, T.J.; Khlopkov, K.; Pretorius, T.; Balzani, D.; Brands, D.; Schröder, J. Modeling of Microstructure Evolution with Dynamic Recrystallization in Finite Element Simulations of Martensitic Steel. Steel Res. Int. 2015, 87, 37–45. [Google Scholar] [CrossRef]
- Karhausen, K.; Kopp, R. Model for integrated process and microstructure simulation in hot forming. Steel Res. 1992, 63, 247–256. [Google Scholar] [CrossRef]
- Soufian, E.; Darabi, R.; Abouridouane, M.; Reis, A.; Bergs, T. Numerical predictions of orthogonal cutting–induced residual stress of super alloy Inconel 718 considering dynamic recrystallization. Int. J. Adv. Manuf. Technol. 2022, 122, 601–617. [Google Scholar] [CrossRef]
- Militzer, M. Computer Simulation of Microstructure Evolution in Low Carbon Sheet Steels. ISIJ Int. 2007, 47, 1–15. [Google Scholar] [CrossRef]
- Nanba, S.; Kitamura, M.; Shimada, M.; Katsumata, M.; Inoue, T.; Imamura, H.; Maeda, Y.; Hattori, S. Prediction of Microstructure Distribution in the Through-thickness Direction during and after Hot Rolling in Carbon Steels. ISIJ Int. 1992, 32, 377–386. [Google Scholar] [CrossRef]
- Pietrzyk, M. Finite element based model of structure development in the hot rolling process. Steel Res. 2016, 61, 603–607. [Google Scholar] [CrossRef]
- Dourandish, S.; Champliaud, H.; Morin, J.-B.; Jahazi, M. Numerical simulation and experimental validation of microstructure evolution during the upsetting process of a large size martensitic stainless steel forging. Int. J. Mater. Form. 2024, 17, 38. [Google Scholar] [CrossRef]
- Stefani, N.; Olga, B.; Reshetov, A.; Blackwell, P. On the applicability of JMAK-type models in predicting IN718 microstructural evolution. Comput. Methods Mater. Sci. 2016, 17, 59–68. [Google Scholar] [CrossRef]
- Haoqiang, Z.; Liu, C.; Dongli, P.; Juanatas, R.; Niguidula, J.; Caballero, J.M. Thermo-mechanical effects and microstructural evolution-coupled numerical simulation on the hot forming processes of superalloy turbine disk. High Temp. Mater. Process. 2024, 43, 20240013. [Google Scholar] [CrossRef]
- Matsui, T. High temperature deformation and dynamic recrystallization behavior of Alloy718. Mater. Trans. 2013, 54, 512–519. [Google Scholar] [CrossRef]
- He, F.; Ma, X.; Ma, K.; Ding, Y.; Shi, G.; Wang, C. Multi-Scale Simulation of Recrystallization during Rolling of Large 2219 Aluminum Alloy Rings. Metals 2023, 13, 448. [Google Scholar] [CrossRef]
- Lei, X.; Sanders, R.E.; Yang, X.; Lin, F.; Juul Jensen, D. Quantitative Comparison of the Recrystallization Kinetics of Two Industrially Processed 5xxx Aluminum Alloys. Metall. Mater. Trans. A 2021, 52, 4827–4840. [Google Scholar] [CrossRef]
- Mohammadi, H.; Eivani, A.R.; Seyedein, S.H.; Ghosh, M.; Jafarian, H.R. Evolution of dynamic recrystallization behavior and simulation of isothermal compression of Zn–22Al alloy. J. Mater. Res. Technol. 2023, 24, 4009–4023. [Google Scholar] [CrossRef]
- Li, Z.; Chai, Y.; Qin, L.; Zhu, Y.; Niu, Y.; Fan, J.; Yue, Z. Construction of a Predictive Model for Dynamic and Static Recrystallization Kinetics of Cast TC21 Titanium Alloy. Crystals 2024, 14, 424. [Google Scholar] [CrossRef]
- Brown, S.; Wlassich, J. Application of Invariant Set Theory to Dynamic Recrystallization Constitutive Behavior. Metall. Trans. A 1992, 23, 2091–2103. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Y.; Farrugia, D.C.J.; Zhou, M. Development of dislocation-based unified material model for simulating microstructure evolution in multipass hot rolling. Philos. Mag. 2005, 85, 1967–1987. [Google Scholar] [CrossRef]
- Cho, H.E.; Hammi, Y.; Bowman, A.L.; Karato, S.-I.; Baumgardner, J.R.; Horstemeyer, M.F. A unified static and dynamic recrystallization Internal State Variable (ISV) constitutive model coupled with grain size evolution for metals and mineral aggregates. Int. J. Plast. 2019, 112, 123–157. [Google Scholar] [CrossRef]
- Estrin, Y. Dislocation theory based constitutive modelling: Foundations and applications. J. Mater. Process. Technol. 1998, 80–81, 33–39. [Google Scholar] [CrossRef]
- Bernard, P.; Bag, S.; Huang, K.; Logé, R.E. A two-site mean field model of discontinuous dynamic recrystallization. Mater. Sci. Eng. A 2011, 528, 7357–7367. [Google Scholar] [CrossRef]
- Wu, G.C.; Lin, Y.C.; Wan, M.; Zeng, N.F.; Zhang, S.; Zhang, H.J.; Chen, M.-S.; Jiang, Y.-Q. An Internal-State-Variable-Based Continuous Dynamic Recrystallization Model for Thermally Deformed TC18 Alloy. Materials 2024, 17, 4026. [Google Scholar] [CrossRef]
- Beltran, O.; Huang, K.; Logé, R.E. A mean field model of dynamic and post-dynamic recrystallization predicting kinetics, grain size and flow stress. Comput. Mater. Sci. 2015, 102, 293–303. [Google Scholar] [CrossRef]
- Favre, J.; Fabrègue, D.; Chiba, A.; Bréchet, Y. Nucleation of recrystallization in fine-grained materials: An extension of the Bailey–Hirsch criterion. Philos. Mag. Lett. 2013, 93, 631–639. [Google Scholar] [CrossRef]
- Momeni, A.; Dehghani, K.; Ebrahimi, G.R. Modeling the initiation of dynamic recrystallization using a dynamic recovery model. J. Alloys Compd. 2011, 509, 9387–9393. [Google Scholar] [CrossRef]
- Huo, Y.; Bai, Q.; Wang, B.; Lin, J.; Zhou, J. A new application of unified constitutive equations for cross wedge rolling of a high-speed railway axle steel. J. Mater. Process. Technol. 2015, 223, 274–283. [Google Scholar] [CrossRef]
- Li, Y.; Yu, L.; Zheng, J.-H.; Guan, B.; Zheng, K. A physical-based unified constitutive model of AA7075 for a novel hot forming condition with pre-cooling. J. Alloys Compd. 2021, 876, 160142. [Google Scholar] [CrossRef]
- Sun, Z.C.; Wu, H.L.; Cao, J.; Yin, Z.K. Modeling of continuous dynamic recrystallization of Al-Zn-Cu-Mg alloy during hot deformation based on the internal-state-variable (ISV) method. Int. J. Plast. 2018, 106, 73–87. [Google Scholar] [CrossRef]
- Brown, A.A.; Bammann, D.J. Validation of a model for static and dynamic recrystallization in metals. Int. J. Plast. 2012, 32, 17–35. [Google Scholar] [CrossRef]
- Puchi-Cabrera, E.S.; Guérin, J.D.; La Barbera-Sosa, J.G.; Dubar, M.; Dubar, L. Plausible extension of Anand’s model to metals exhibiting dynamic recrystallization and its experimental validation. Int. J. Plast. 2018, 108, 70–87. [Google Scholar] [CrossRef]
- Galindo-Nava, E.I.; Rivera-Díaz-del-Castillo, P.E.J. Thermostatistical modelling of hot deformation in FCC metals. Int. J. Plast. 2013, 47, 202–221. [Google Scholar] [CrossRef]
- Galindo-Nava, E.I.; Perlade, A.; Rivera-Díaz-del-Castillo, P.E.J. A thermostatistical theory for solid solution effects in the hot deformation of alloys: An application to low-alloy steels. Model. Simul. Mater. Sci. Eng. 2014, 22, 015009. [Google Scholar] [CrossRef]
- Lin, J. A set of unified constitutive equations for modelling microstructure evolution in hot deformation. J. Mater. Process. Technol. 2003, 143–144, 281–285. [Google Scholar] [CrossRef]
- Lin, J.; Dean, T.A. Modelling of microstructure evolution in hot forming using unified constitutive equations. J. Mater. Process. Technol. 2005, 167, 354–362. [Google Scholar] [CrossRef]
- Tang, X.; Wang, B.; Huo, Y.; Ma, W.; Zhou, J.; Ji, H.; Fu, X. Unified modeling of flow behavior and microstructure evolution in hot forming of a Ni-based superalloy. Mater. Sci. Eng. A 2016, 662, 54–64. [Google Scholar] [CrossRef]
- Liu, R.; Salahshoor, M.; Melkote, S.N.; Marusich, T. A unified internal state variable material model for inelastic deformation and microstructure evolution in SS304. Mater. Sci. Eng. A 2014, 594, 352–363. [Google Scholar] [CrossRef]
- Szeliga, D.; Bzowski, K.; Rauch, Ł.; Kuziak, R.; Pietrzyk, M. Mean field and full field modelling of microstructure evolution and phase transformations during hot forming and cooling of low carbon steels. Comput. Methods Mater. Sci. 2020, 20, 121–132. [Google Scholar] [CrossRef]
- Anderson, M.P.; Srolovitz, D.J.; Grest, G.S.; Sahni, P.S. Computer simulation of grain growth—I. Kinetics. Acta Metall. 1984, 32, 783–791. [Google Scholar] [CrossRef]
- Srolovitz, D.J.; Anderson, M.P.; Sahni, P.S.; Grest, G.S. Computer simulation of grain growth—II. Grain size distribution, topology, and local dynamics. Acta Metall. 1984, 32, 793–802. [Google Scholar] [CrossRef]
- Chun, Y.B.; Semiatin, S.L.; Hwang, S.K. Monte Carlo modeling of microstructure evolution during the static recrystallization of cold-rolled, commercial-purity titanium. Acta Mater. 2006, 54, 3673–3689. [Google Scholar] [CrossRef]
- Humphreys, F.J. Modelling mechanisms and microstructures of recrystallisation. Mater. Sci. Technol. 1992, 8, 135–144. [Google Scholar] [CrossRef]
- Rollett, A.D.; Luton, M.J.; Srolovitz, D.J. Microstructural simulation of dynamic recrystallization. Acta Metall. Mater. 1992, 40, 43–55. [Google Scholar] [CrossRef]
- Steiner, M.A.; McCabe, R.J.; Garlea, E.; Agnew, S.R. Monte Carlo modeling of recrystallization processes in α-uranium. J. Nucl. Mater. 2017, 492, 74–87. [Google Scholar] [CrossRef]
- Raabe, D. Scaling Monte Carlo kinetics of the Potts model using rate theory. Acta Mater. 2000, 48, 1617–1628. [Google Scholar] [CrossRef]
- El-Khozondar, R.J. Numerical Simulation of Grain Size Distribution in Two-Phase Polycrystalline Materials. Int. J. Mater. Sci. Appl. 2014, 3, 381–390. [Google Scholar] [CrossRef]
- Maazi, N.; Lezzar, B. An efficient Monte Carlo Potts method for the grain growth simulation of single-phase systems. Comput. Methods Mater. Sci. 2020, 20, 85–94. [Google Scholar] [CrossRef]
- Holm, E.A.; Battaile, C.C. The computer simulation of microstructural evolution. JOM 2001, 53, 20–23. [Google Scholar] [CrossRef]
- Jedrychowski, M.; Bacroix, B.; Tarasiuk, J.; Wronsk, S. Monte Carlo modelling of recrystallization in alpha Zirconium. Comput. Mater. Sci. 2021, 199, 110742. [Google Scholar] [CrossRef]
- Xu, H.; Shu, X.; Zuo, J.; Yin, A.; Wang, Y. Kinetic Monte Carlo simulation of abnormal grain growth in textured systems with anisotropic grain boundary energy and mobility. Mater. Today Commun. 2022, 30, 103133. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, J.; Liang, Y.; Wu, P. Monte-Carlo-assisted phase field simulations of grain structure evolution during the welding process. Metals 2023, 13, 623. [Google Scholar] [CrossRef]
- Chao, X.; Qi, L.; Ma, W.; Ge, J.; Tian, W. Monte Carlo based strategy to simulate the microstructure evolution of the short-fiber reinforced metal matrix composites. Mater. Today Commun. 2022, 33, 104275. [Google Scholar] [CrossRef]
- Kawasaki, K.; Nagai, T.; Nakashima, K. Vertex models for two-dimensional grain growth. Philos. Mag. B 1989, 60, 399–421. [Google Scholar] [CrossRef]
- Fuchizaki, K.; Kusaba, T.; Kawasaki, K. Computer modelling of three-dimensional cellular pattern growth. Philos. Mag. B 1995, 71, 333–357. [Google Scholar] [CrossRef]
- Weygand, D.; Brechet, Y.; Lépinoux, J. A vertex dynamics simulation of grain growth in two dimensions. Philos. Mag. B 1998, 78, 329–352. [Google Scholar] [CrossRef]
- Weygand, D.; Bréchet, Y.; Lépinoux, J. Zener pinning and grain growth: A two-dimensional vertex computer simulation. Acta Mater. 1999, 47, 961–970. [Google Scholar] [CrossRef]
- Weygand, D.; Brechett, Y.; Lepinoux, J. On the nucleation of recrystallization by a bulging mechanism: A two-dimensional vertex simulation. Philos. Mag. B 2000, 80, 1987–1996. [Google Scholar] [CrossRef]
- Weygand, D.; Brechett, Y.; Lepinoux, J. Mechanisms and kinetics of recrystallisation: A two dimensional vertex dynamics simulation. Interface Sci. 2001, 9, 311–317. [Google Scholar] [CrossRef]
- Barrales-Mora, L.A. 2D and 3D Grain Growth Modeling and Simulation; Cuvillier Verlag: Göttingen, Germany, 2008. [Google Scholar]
- Piękoś, K.; Tarasiuk, J.; Wierzbanowski, K.; Bacroix, B. Stochastic vertex model of recrystallization. Comput. Mater. Sci. 2008, 42, 36–42. [Google Scholar] [CrossRef]
- Sazo, A.H.J.; Torres, C.E.; Emelianenko, M.; Golovaty, D. A vertex model of recrystallization with stored energy implemented in GPU. Mater. Res. Express 2019, 6, 055506. [Google Scholar] [CrossRef]
- Maazi, N. Vertex Simulation of Grain Growth from Electron Backscatter Diffraction Data. Acta Phys. Pol. A 2022, 141, 467–473. [Google Scholar] [CrossRef]
- Mellbin, Y.; Hallberg, H.; Ristinmaa, M. A combined crystal plasticity and graph-based vertex model of dynamic recrystallization at large deformations. Model. Simul. Mater. Sci. Eng. 2015, 23, 045011. [Google Scholar] [CrossRef]
- Mellbin, Y.; Hallberg, H.; Ristinmaa, M. Recrystallization and texture evolution during hot rolling of copper, studied by a multiscale model combining crystal plasticity and vertex models. Model. Simul. Mater. Sci. Eng. 2016, 24, 075004. [Google Scholar] [CrossRef]
- Mellbin, Y.; Hallberg, H.; Ristinmaa, M. An extended vertex and crystal plasticity framework for efficient multiscale modeling of polycrystalline materials. Int. J. Solids Struct. 2017, 125, 150–160. [Google Scholar] [CrossRef]
- Sai Deepak Kumar, A. Sequential Coupling of Phase-Field and Vertex Dynamics Models for Grain Growth Simulations. Master’s Thesis, University of California at Los Angeles (UCLA), Los Angeles, CA, USA, 2024. [Google Scholar]
- Goetz, R.L.; Seetharaman, V. Modeling Dynamic Recrystallization Using Cellular Automata. Scr. Mater. 1998, 38, 405–413. [Google Scholar] [CrossRef]
- Ding, R.; Guo, Z.X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization. Acta Mater. 2001, 49, 3163–3175. [Google Scholar] [CrossRef]
- Chen, F.; Cui, Z.; Liu, J.; Chen, W.; Chen, S. Mesoscale simulation of the high-temperature austenitizing and dynamic recrystallization by coupling a cellular automaton with a topology deformation technique. Mater. Sci. Eng. A 2010, 527, 5539–5549. [Google Scholar] [CrossRef]
- Wang, L.; Fang, G.; Qian, L. Modeling of dynamic recrystallization of magnesium alloy using cellular automata considering initial topology of grains. Mater. Sci. Eng. A 2018, 711, 268–283. [Google Scholar] [CrossRef]
- Xiao, N.; Zheng, C.; Li, D.; Li, Y. A simulation of dynamic recrystallization by coupling a cellular automaton method with a topology deformation technique. Comput. Mater. Sci. 2008, 41, 366–374. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, C.; Zhang, L.; Shen, W.; Yang, Q. Cellular Automaton Modeling of Dynamic Recrystallization of Nimonic 80A Superalloy Based on Inhomogeneous Distribution of Dislocations Inside Grains. J. Mater. Eng. Perform. 2018, 27, 4955–4967. [Google Scholar] [CrossRef]
- Jin, Z.; Cui, Z. Investigation on strain dependence of dynamic recrystallization behavior using an inverse analysis method. Mater. Sci. Eng. A 2010, 527, 3111–3119. [Google Scholar] [CrossRef]
- Chen, F.; Zhu, H.; Zhang, H.; Cui, Z. Mesoscale Modeling of Dynamic Recrystallization: Multilevel Cellular Automaton Simulation Framework. Metall. Mater. Trans. A 2020, 51, 1286–1303. [Google Scholar] [CrossRef]
- Won Lee, H.; Im, Y.-T. Numerical modeling of dynamic recrystallization during nonisothermal hot compression by cellular automata and finite element analysis. Int. J. Mech. Sci. 2010, 52, 1277–1289. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Wen, K.; Huang, S.; Li, X.; Yan, H.; Liu, H.; Zhang, Y.; Xiong, B. Simulation of dynamic recrystallization for an Al-Zn-Mg-Cu alloy using cellular automaton. Prog. Nat. Sci. Mater. Int. 2019, 29, 477–484. [Google Scholar] [CrossRef]
- Duan, X.; Wang, M.; Che, X.; He, L.; Liu, J. A new cellular automata model for hot deformation behavior of AZ80A magnesium alloy considering topological technique. Mater. Today Commun. 2023, 37, 106936. [Google Scholar] [CrossRef]
- Chen, M.-S.; Yuan, W.-Q.; Lin, Y.C.; Li, H.-B.; Zou, Z.-H. Modeling and simulation of dynamic recrystallization behavior for 42CrMo steel by an extended cellular automaton method. Vacuum 2017, 146, 142–151. [Google Scholar] [CrossRef]
- Bos, C.; Mecozzi, M.G.; Sietsma, J. A microstructure model for recrystallisation and phase transformation during the dual-phase steel annealing cycle. Comput. Mater. Sci. 2010, 48, 692–699. [Google Scholar] [CrossRef]
- Zheng, C.; Raabe, D. Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model. Acta Mater. 2013, 61, 5504–5517. [Google Scholar] [CrossRef]
- Zheng, C.; Xiao, N.; Li, D.; Li, Y. Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling: A cellular automaton modeling. Comput. Mater. Sci. 2008, 44, 507–514. [Google Scholar] [CrossRef]
- Wang, J.; Liang, C.; Ouyang, B.; Zhang, Z.; Chang, X.; Qi, Y.; Chen, G.; Chen, Q. Mesoscale modeling of continuous dynamic recrystallization in Ti-10V-2Fe-3Al alloy. Int. J. Mech. Sci. 2024, 271, 109303. [Google Scholar] [CrossRef]
- OuYang, D.L.; Fu, M.W.; Lu, S.Q. Study on the dynamic recrystallization behavior of Ti-alloy Ti–10V–2Fe–3V in β processing via experiment and simulation. Mater. Sci. Eng. A 2014, 619, 26–34. [Google Scholar] [CrossRef]
- Ji, H.; Peng, Z.; Huang, X.; Wang, B.; Xiao, W.; Wang, S. Dynamic recrystallization of Ti-6Al-4V titanium alloy based on cellular automata. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022, 237, 1442–1459. [Google Scholar] [CrossRef]
- Ren, L.; Shen, G.; Qi, L.; Li, Z.; Zhang, J. Through-process microstructural evolution and grain regulation of a commercially pure titanium laser-welded joint: A multi-scale simulation and experiment. Mater. Lett. 2024, 371, 136942. [Google Scholar] [CrossRef]
- Hallberg, H.; Wallin, M.; Ristinmaa, M. Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton. Comput. Mater. Sci. 2010, 49, 25–34. [Google Scholar] [CrossRef]
- Majta, J.; Madej, Ł.; Svyetlichnyy, D.S.; Perzyński, K.; Kwiecień, M.; Muszka, K. Modeling of the inhomogeneity of grain refinement during combined metal forming process by finite element and cellular automata methods. Mater. Sci. Eng. A 2016, 671, 204–213. [Google Scholar] [CrossRef]
- Sitko, M.; Smyk, G.; Madej, L.; Pietrzyk, M. Development of multi-mesh Cellular Automata-Finite Element model of dynamic recrystallization during rolling process. In Proceedings of the 13th International Conference on Computational Plasticity (COMPLAS XIII), Barcelona, Spain, 1–3 September 2015. [Google Scholar]
- Sitko, M.; Pietrzyk, M.; Madej, L. Time and length scale issues in numerical modelling of dynamic recrystallization based on the multi space cellular automata method. J. Comput. Sci. 2016, 16, 98–113. [Google Scholar] [CrossRef]
- Sitko, M.; Czarnecki, M.; Pawlikowski, K.; Madej, L. Evaluation of the effectiveness of neighbors’ selection algorithms in the random cellular automata model of unconstrained grain growth. Mater. Manuf. Process. 2023, 38, 1972–1982. [Google Scholar] [CrossRef]
- Pawlikowski, K.; Sitko, M.; Perzyński, K.; Madej, L. Towards a Direct Consideration of Microstructure Deformation during Dynamic Recrystallisation Simulations with the Use of Coupled Random Cellular Automata—Finite Element Model. Materials 2024, 17, 4327. [Google Scholar] [CrossRef]
- Yazdipour, N.; Dehghan-Manshadi, A.; Davies, C.H.; Hodgson, P.D. Simulation of dynamic recrystallization using irregular cellular automata. Mater. Forum 2007, 31, 164–176. [Google Scholar]
- Yazdipour, N.; Davies, C.H.; Hodgson, P.D. Microstructural modeling of dynamic recrystallization using irregular cellular automata. Comput. Mater. Sci. 2008, 44, 566–576. [Google Scholar] [CrossRef]
- Chen, F.; Qi, K.; Cui, Z.; Lai, X. Modeling the dynamic recrystallization in austenitic stainless steel using cellular automaton method. Comput. Mater. Sci. 2014, 83, 331–340. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Tian, W.; Qi, H.; Yan, H. Combined cellular automaton model for dynamic recrystallization evolution of 42CrMo cast steel. Chin. J. Mech. Eng. 2018, 31, 85. [Google Scholar] [CrossRef]
- Azarbarmas, M. Modeling the Dynamic Recrystallization by Using Cellular Automaton: The Current Status, Challenges and Future Prospects—A Review. Iran. J. Mater. Sci. Eng. 2020, 17, 103–129. [Google Scholar]
- Zhu, H.; Chen, F.; Zhang, H.; Cui, Z. Review on modeling and simulation of microstructure evolution during dynamic recrystallization using cellular automaton method. Sci. China Technol. Sci. 2019, 63, 357–396. [Google Scholar] [CrossRef]
- Zhao, Y.; Xing, H.; Zhang, L.; Huang, H.; Sun, D.; Dong, X.; Shen, Y.; Wang, J. Development of Phase-Field Modeling in Materials Science in China: A Review. Acta Metall. Sin. 2023, 36, 1749–1775. [Google Scholar] [CrossRef]
- Takaki, T.; Yamanaka, A.; Tomita, Y. Phase-Field Modeling for Dynamic Recrystallization. In From Creep Damage Mechanics to Homogenization Methods; Springer: Cham, Switzerland, 2015; pp. 441–459. [Google Scholar]
- Cai, Y.; Sun, C.Y.; Li, Y.L.; Hu, S.Y.; Zhu, N.Y.; Barker, E.I.; Qian, L. Phase field modeling of discontinuous dynamic recrystallization in hot deformation of magnesium alloys. Int. J. Plast. 2020, 133, 102773. [Google Scholar] [CrossRef]
- Zhang, Q.; Fang, G. An efficient grain remapping algorithm for phase-field modeling of dynamic recrystallization. Comput. Mater. Sci. 2022, 215, 111778. [Google Scholar] [CrossRef]
- Li, B.; Peng, J.; Xue, B.; Jin, S.; Liang, L.; Lu, G.-H. Phase-field simulations of the recrystallization and the mechanical property response in deformed tungsten. Nucl. Mater. Energy 2023, 36, 101488. [Google Scholar] [CrossRef]
- Elder, K.R.; Grant, M. Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 2004, 70, 051605. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, K.; Zhang, H.; Tian, X.; Jiang, Q.; Murugadoss, V.; Hou, H. Dislocation motion in plastic deformation of nano polycrystalline metal materials: A phase field crystal method study. Adv. Compos. Hybrid Mater. 2022, 5, 2546–2556. [Google Scholar] [CrossRef]
- Takaki, T.; Yamanaka, A.; Tomita, Y. Multi-phase-field Simulations of Dynamic Recrystallization during Transient Deformation. ISIJ Int. 2011, 51, 1717–1723. [Google Scholar] [CrossRef]
- Hallberg, H. Approaches to Modeling of Recrystallization. Metals 2011, 1, 16–48. [Google Scholar] [CrossRef]
- Hamed, A.; Rayaprolu, S.; Winther, G.; El-Azab, A. Impact of the plastic deformation microstructure in metals on the kinetics of recrystallization: A phase-field study. Acta Mater. 2022, 240, 118332. [Google Scholar] [CrossRef]
- Xiao, N.; Hodgson, P.; Rolfe, B.; Li, D. Modelling discontinuous dynamic recrystallization using a quantitative multi-order-parameter phase-field method. Comput. Mater. Sci. 2018, 155, 298–311. [Google Scholar] [CrossRef]
- Li, R.; Zhang, Y.; Moelans, N.; Yadav, V.; Juul Jensen, D. New understanding of static recrystallization from phase-field simulations. MRS Bull. 2024, 49, 594–602. [Google Scholar] [CrossRef]
- Suwa, Y.; Tomita, M.; Tanaka, Y.; Ushioda, K. Phase-field Simulation of Recrystallization in Cold Rolling and Subsequent Annealing of Pure Iron Exploiting EBSD Data of Cold-rolled Sheet. ISIJ Int. 2021, 61, 350–360. [Google Scholar] [CrossRef]
- Lusk, M.T. A phase field paradigm for grain growth and recrystallization. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1999, 455, 677–700. [Google Scholar] [CrossRef]
- Khajezade, A.; Poole, W.J.; Greenwood, M.; Militzer, M. Large-Scale Multi-Phase-Field Simulation of 2D Subgrain Growth. Metals 2024, 14, 584. [Google Scholar] [CrossRef]
- Galfré, A.; Huang, X.; Couenne, F.; Cogné, C. The phase field method—From fundamentals to practical applications in crystal growth. J. Cryst. Growth 2023, 620, 127334. [Google Scholar] [CrossRef]
- Muhammad, S.; Li, Y.; Yan, Z.; Maqbool, S.; Shi, S.; Muhammad, I. Phase-field crystal modeling of crystal growth patterns with competition of undercooling and atomic density. Phys. Chem. Chem. Phys. 2020, 22, 21858–21871. [Google Scholar] [CrossRef]
- Apel, M. Phase-Field Method for Solid-State Phase Transformations. In Handbook of Mechanics of Materials; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–24. [Google Scholar]
- Mamivand, M.; Zaeem, M.A.; El Kadiri, H. A review on phase field modeling of martensitic phase transformation. Comput. Mater. Sci. 2013, 77, 304–311. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, J.; Fang, G. From mechanical behavior and elastocaloric effect to microscopic mechanisms of gradient-structured NiTi alloy: A phase-field study. Int. J. Plast. 2023, 171, 103809. [Google Scholar] [CrossRef]
- Lahiri, A. Phase-field Modeling of Phase Transformations in Multicomponent Alloys: A Review. J. Indian Inst. Sci. 2022, 102, 39–57. [Google Scholar] [CrossRef]
- Boettinger, W.J.; Warren, J.A.; Beckermann, C.; Karma, A. Phase-Field Simulation of Solidification. Annu. Rev. Mater. Res. 2002, 32, 163–194. [Google Scholar] [CrossRef]
- Gu, Y.; He, X.; Han, D. On the phase-field modeling of rapid solidification. Comput. Mater. Sci. 2021, 199, 110812. [Google Scholar] [CrossRef]
- Chen, L.-Q.; Moelans, N. Phase-field method of materials microstructures and properties. MRS Bull. 2024, 49, 551–555. [Google Scholar] [CrossRef]
- Bernacki, M.; Chastel, Y.; Coupez, T.; Logé, R.E. Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials. Scr. Mater. 2008, 58, 1129–1132. [Google Scholar] [CrossRef]
- Logé, R.; Bernacki, M.; Resk, H.; Delannay, L.; Digonnet, H.; Chastel, Y.; Coupez, T. Linking plastic deformation to recrystallization in metals using digital microstructures. Philos. Mag. 2008, 88, 3691–3712. [Google Scholar] [CrossRef]
- Bernacki, M.; Resk, H.; Coupez, T.; Logé, R.E. Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework. Model. Simul. Mater. Sci. Eng. 2009, 17, 064006. [Google Scholar] [CrossRef]
- Hallberg, H. A modified level set approach to 2D modeling of dynamic recrystallization. Model. Simul. Mater. Sci. Eng. 2013, 21, 085012. [Google Scholar] [CrossRef]
- Florez, S.; Alvarado, K.; Bernacki, M. A new front-tracking Lagrangian model for the modeling of dynamic and post-dynamic recrystallization. Model. Simul. Mater. Sci. Eng. 2021, 29, 035004. [Google Scholar] [CrossRef]
- Scholtes, B. Development of an Efficient Level Set Framework for the Full Field Modeling Recrystallization in 3D. Ph.D. Thesis, Université Paris Sciences et Lettres, Paris, France, 2016. [Google Scholar]
- Grand, V.; Flipon, B.; Gaillac, A.; Bernacki, M. Modeling CDRX and MDRX during hot forming of zircaloy-4. Model. Simul. Mater. Sci. Eng. 2023, 31, 085008. [Google Scholar] [CrossRef]
- Grand, V.; Flipon, B.; Gaillac, A.; Bernacki, M. Simulation of Continuous Dynamic Recrystallization Using a Level-Set Method. Materials 2022, 15, 8547. [Google Scholar] [CrossRef]
- Ruiz Sarrazola, D.A.; Pino Muñoz, D.; Bernacki, M. A new numerical framework for the full field modeling of dynamic recrystallization in a CPFEM context. Comput. Mater. Sci. 2020, 179, 109645. [Google Scholar] [CrossRef]
- Murgas, B.; Florez, S.; Bozzolo, N.; Fausty, J.; Bernacki, M. Comparative Study and Limits of Different Level-Set Formulations for the Modeling of Anisotropic Grain Growth. Materials 2021, 14, 3883. [Google Scholar] [CrossRef] [PubMed]
- Pei, R.; Zhao, Y.; Zubair, M.; Yi, S.; Al-Samman, T. Solute drag-controlled grain growth in magnesium investigated by quasi in-situ orientation mapping and level-set simulations. J. Magnes. Alloys 2023, 11, 2312–2325. [Google Scholar] [CrossRef]
- Bernacki, M. Kinetic equations and level-set approach for simulating solid-state microstructure evolutions at the mesoscopic scale: State of the art, limitations, and prospects. Prog. Mater. Sci. 2024, 142, 101224. [Google Scholar] [CrossRef]
- Raabe, D.; Becker, R. Coupling of a Crystal Plasticity Finite Element Model with a Probabilistic Cellular Automaton for Simulating Primary Static Recrystallization in Aluminum. Model. Simul. Mater. Sci. Eng. 2000, 8, 445. [Google Scholar] [CrossRef]
- Chuan, W.; He, Y.; Wei, L.H. Modeling of discontinuous dynamic recrystallization of a near-α titanium alloy IMI834 during isothermal hot compression by combining a cellular automaton model with a crystal plasticity finite element method. Comput. Mater. Sci. 2013, 79, 944–959. [Google Scholar] [CrossRef]
- Popova, E.; Staraselski, Y.; Brahme, A.; Mishra, R.K.; Inal, K. Coupled crystal plasticity—Probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys. Int. J. Plast. 2015, 66, 85–102. [Google Scholar] [CrossRef]
- Li, H.; Sun, X.; Yang, H. A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation, DRX microstructural evolution and mechanical responses in titanium alloys. Int. J. Plast. 2016, 87, 154–180. [Google Scholar] [CrossRef]
- Sun, X.; Li, H.; Zhan, M. Full-stage prediction of discontinuous dynamic recrystallization of a titanium alloy through a sub-mesh internal state variables method. Model. Simul. Mater. Sci. Eng. 2019, 27, 015004. [Google Scholar] [CrossRef]
- Legwand, A.; Sitko, M.; Perzynski, K.; Madej, Ł. RCAFE based numerical model of dynamic recrystallization. J. Mach. Eng. 2016, 16, 52–60. [Google Scholar]
- Madej, L.; Sitko, M.; Legwand, A.; Perzynski, K.; Michalik, K. Development and evaluation of data transfer protocols in the fully coupled random cellular automata finite element model of dynamic recrystallization. J. Comput. Sci. 2018, 26, 66–77. [Google Scholar] [CrossRef]
- Li, W.; Li, S.; Li, X.; Xu, D.; Shao, Y.; Attallah, M.M.; Essa, K. Crystal plasticity model of induction heating-assisted incremental sheet forming with recrystallisation simulation in cellular automata. Int. J. Adv. Manuf. Technol. 2022, 123, 903–925. [Google Scholar] [CrossRef]
- Park, J.; Rout, M.; Min, K.-M.; Chen, S.-F.; Lee, M.-G. A fully coupled crystal plasticity-cellular automata model for predicting thermomechanical response with dynamic recrystallization in AISI 304LN stainless steel. Mech. Mater. 2022, 167, 104248. [Google Scholar] [CrossRef]
- Shah, V.; Sedighiani, K.; Van Dokkum, J.S.; Bos, C.; Roters, F.; Diehl, M. Coupling crystal plasticity and cellular automaton models to study meta-dynamic recrystallization during hot rolling at high strain rates. Mater. Sci. Eng. A 2022, 849, 143471. [Google Scholar] [CrossRef]
- Takaki, T.; Yamanaka, A.; Higa, Y.; Tomita, Y. Phase-field model during static recrystallization based on crystal-plasticity theory. J. Comput. Aided Mater. Des. 2008, 14, 75–84. [Google Scholar] [CrossRef]
- Luan, Q.; Lee, J.; Zheng, Z.; Lin, J.; Jiang, J. Static recrystallization study on pure aluminium using crystal plasticity finite element and phase-field modelling. Procedia Manuf. 2018, 15, 1800–1807. [Google Scholar] [CrossRef]
- Takaki, T.; Tomita, Y. Static recrystallization simulations starting from predicted deformation microstructure by coupling multi-phase-field method and finite element method based on crystal plasticity. Int. J. Mech. Sci. 2010, 52, 320–328. [Google Scholar] [CrossRef]
- Chen, L.; Chen, J.; Lebensohn, R.A.; Ji, Y.Z.; Heo, T.W.; Bhattacharyya, S.; Chang, K.; Mathaudhu, S.; Liu, Z.; Chen, L.-Q. An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals. Comput. Methods Appl. Mech. Eng. 2015, 285, 829–848. [Google Scholar] [CrossRef]
- Güvenç, O.; Bambach, M.; Hirt, G. Coupling of Crystal Plasticity Finite Element and Phase Field Methods for the Prediction of SRX Kinetics after Hot Working. Steel Res. Int. 2014, 85, 999–1009. [Google Scholar] [CrossRef]
- Vondrous, A.; Bienger, P.; Schreijäg, S.; Selzer, M.; Schneider, D.; Nestler, B.; Helm, D.; Mönig, R. Combined crystal plasticity and phase-field method for recrystallization in a process chain of sheet metal production. Comput. Mech. 2015, 55, 439–452. [Google Scholar] [CrossRef]
- Min, K.M.; Jeong, W.; Hong, S.H.; Lee, C.A.; Cha, P.R.; Han, H.N.; Lee, M.-G. Integrated crystal plasticity and phase field model for prediction of recrystallization texture and anisotropic mechanical properties of cold-rolled ultra-low carbon steels. Int. J. Plast. 2020, 127, 102644. [Google Scholar] [CrossRef]
- Roy, A.M.; Ganesan, S.; Acar, P.; Arróyave, R.; Sundararaghavan, V. Combining crystal plasticity and phase field model for predicting texture evolution and the influence of nuclei clustering on recrystallization path kinetics in Ti-alloys. Acta Mater. 2024, 266, 119645. [Google Scholar] [CrossRef]
- Kannenberg, T.; Schöller, L.; Prahs, A.; Schneider, D.; Nestler, B. Microstructure evolution accounting for crystal plasticity in the context of the multiphase-field method. Comput. Mech. 2023, 74, 67–84. [Google Scholar] [CrossRef]
- Muramatsu, M.; Sato, S.; Aoyagi, Y.; Shizawa, K. A dynamic recrystallization simulation based on phase-field and dislocation-crystal plasticity models. In Proceedings of the XI International Conference on Computational Plasticity, Fundamentals and Applications, COMPLAS XI, Barcelona, Spain, 7–9 September 2011; pp. 587–593. [Google Scholar]
- Kujirai, S.; Shizawa, K. Modelling and simulation of dynamic recrystallisation based on multi-phase-field and dislocation-based crystal plasticity models. Philos. Mag. 2020, 100, 2106–2127. [Google Scholar] [CrossRef]
- Li, Y.; Hu, S.; Barker, E.; Overman, N.; Whalen, S.; Mathaudhu, S. Effect of grain structure and strain rate on dynamic recrystallization and deformation behavior: A phase field-crystal plasticity model. Comput. Mater. Sci. 2020, 180, 109707. [Google Scholar] [CrossRef]
- Chatterjee, R.; Trivedi, A.; Murty, S.V.S.N.; Alankar, A. Crystal plasticity-phase–field based analyses of interfacial microstructural evolution during dynamic recrystallization in a dual phase titanium alloy. Int. J. Plast. 2024, 181, 104087. [Google Scholar] [CrossRef]
- Zhou, G.; Li, Z.; Li, D.; Peng, Y.; Zurob, H.S.; Wu, P. A polycrystal plasticity based discontinuous dynamic recrystallization simulation method and its application to copper. Int. J. Plast. 2017, 91, 48–76. [Google Scholar] [CrossRef]
- McElfresh, C.; Marian, J. Initial grain orientation controls static recrystallization outcomes in cold-worked iron: Insight from coupled crystal plasticity/vertex dynamics modeling. Acta Mater. 2023, 245, 118631. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, Y.; Hou, H. Core-shell structure nanoprecipitates in Fe-xCu-3.0 Mn-1.5 Ni-1.5 Al alloys: A phase field study. Prog. Nat. Sci. Mater. Int. 2022, 32, 358–368. [Google Scholar] [CrossRef]
- Raabe, D.; Hantcherli, L. 2D cellular automaton simulation of the recrystallization texture of an IF sheet steel under consideration of Zener pinning. Comput. Mater. Sci. 2005, 34, 299–313. [Google Scholar] [CrossRef]
- Goetz, R. Particle stimulated nucleation during dynamic recrystallization using a cellular automata model. Scr. Mater. 2005, 52, 851–856. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, D.; Yang, Y.; Wang, J.; Liu, C.; Zhang, Z.; Wang, H. Modeling and simulation of dynamic recrystallization for Inconel 718 in the presence of δ phase particles using a developed cellular automaton model. Model. Simul. Mater. Sci. Eng. 2019, 27, 035002. [Google Scholar] [CrossRef]
- Zurob, H.S.; Hutchinson, C.R.; Brechet, Y.; Purdy, G. Modeling recrystallization of microalloyed austenite: Effect of coupling recovery, precipitation and recrystallization. Acta Mater. 2002, 50, 3077–3094. [Google Scholar] [CrossRef]
- Schäfer, C.; Pomana, G.; Mohles, V.; Gottstein, G.; Engler, O.; Hirsch, J. Recrystallization Modeling of AA8XXX Alloys with Cellular Automata Considering Recovering Kinetics. Adv. Eng. Mater. 2010, 12, 131–140. [Google Scholar] [CrossRef]
- Schäfer, C.; Mohles, V.; Gottstein, G. Modeling of non-isothermal annealing: Interaction of recrystallization, recovery, and precipitation. Acta Mater. 2011, 59, 6574–6587. [Google Scholar] [CrossRef]
- L’Ecuyer, J.D.; L’Espérance, G. Precipitation interactions with dynamic recrystallization of a HSLA steel. Acta Metall. 1989, 37, 1023–1031. [Google Scholar] [CrossRef]
- Zhu, N.Y.; Sun, C.Y.; Li, Y.L.; Qian, L.Y.; Hu, S.Y.; Cai, Y.; Feng, Y. Modeling discontinuous dynamic recrystallization containing second phase particles in magnesium alloys utilizing phase field method. Comput. Mater. Sci. 2021, 200, 110858. [Google Scholar] [CrossRef]
- Shuai, C.; Liu, W.; Li, H.; Wang, K.; Zhang, Y.; Xie, T.; Chen, L.; Hou, H.; Zhao, Y. Dual influences of deformation-induced W precipitates on dynamic recrystallization and fracture mechanism of the hot-extruded Mg-Y-Zn alloys: An experimental and phase field study. Int. J. Plast. 2023, 170, 103772. [Google Scholar] [CrossRef]
- He, Y.-Y.; Lei, L.-P.; Fang, G. Interactions between dynamic recrystallization and dynamic precipitation during hot forming of magnesium alloy: Multilevel cellular automaton modeling. J. Magnes. Alloys 2024. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, C.; Chu, G.; Liu, Z.; Wang, K.; Meng, Z.; Chen, L.; Sun, L.; Zhao, G. Dynamic precipitation and recrystallization behavior during hot deformation of Al-Zn-Mg-Cu alloy: Experiment and modeling. Int. J. Plast. 2024, 178, 103995. [Google Scholar] [CrossRef]
- Petrik, J.; Ali, S.I.; Feistle, M.; Bambach, M. CrystalMind: A surrogate model for predicting 3D models with recrystallization in open-die hot forging including an optimization framework. Mech. Mater. 2024, 189, 104875. [Google Scholar] [CrossRef]
- Peivaste, I.; Siboni, N.H.; Alahyarizadeh, G.; Ghaderi, R.; Svendsen, B.; Raabe, D.; Mianroodi, J.R. Machine-learning-based surrogate modeling of microstructure evolution using phase-field. Comput. Mater. Sci. 2022, 214, 111750. [Google Scholar] [CrossRef]
- Tang, J. Deep Learning-Guided Prediction of Material’s Microstructures and Applications to Advanced Manufacturing. Ph.D. Thesis, Clemson University, Clemson, SC, USA, 2021. [Google Scholar]
- Ahmad, O.; Kumar, N.; Mukherjee, R.; Bhowmick, S. Accelerating microstructure modeling via machine learning: A method combining autoencoder and convLSTM. Phys. Rev. Mater. 2023, 7, 083802. [Google Scholar] [CrossRef]
- Seibert, P.; Raßloff, A.; Zhang, Y.; Kalina, K.; Reck, P.; Peterseim, D.; Kästner, M. Reconstructing microstructures from statistical descriptors using neural cellular automata. Integr. Mater. Manuf. Innov. 2024, 13, 272–287. [Google Scholar] [CrossRef]
- Zhu, Y.; Cao, Y.; He, Q.; Luo, R.; Zhang, J.; Di, H.; Huang, G.; Liu, Q.; Xiao, J. Machine learning neural-network identification for dynamic recrystallization grains during hot deformation of nickel-based superalloy. Mater. Charact. 2022, 191, 112108. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Q.; Zhou, X.; Cao, G.; Wang, G.; Liu, Z. Machine Learning Complex Interactions Among Recovery, Precipitation, and Recrystallization for Nb Micro-Alloyed Steels. Met. Mater. Int. 2024, 30, 167–181. [Google Scholar] [CrossRef]
Empirical Model | ISV Model | |
---|---|---|
Basic strategy | Data-driven, fitting to experiment data (stress, strain, strain rate, initial grain size, temperature, etc.) | Physically-based, describing microscale mechanisms |
Implementation complexity | Simpler, fewer variables | More complex, involves internal state variables (dislocation density) |
Generalization Performance | Limited, only valid inside trained conditions | Good, can be extrapolated at a large range |
Physical intension | Lacks physical meanings | Provides deep physical insights |
Application universality | Suitable for specific conditions, not for other microstructure evolutions | Suitable for complex conditions, e.g., phase transformation |
Computing cost | Inexpensive (hardly increase the FE costs) | More intensive (significantly increase computing costs) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhu, J.; He, Y.; Jia, H.; Li, B.; Fang, G. State-of-the-Art Review of the Simulation of Dynamic Recrystallization. Metals 2024, 14, 1230. https://doi.org/10.3390/met14111230
Liu X, Zhu J, He Y, Jia H, Li B, Fang G. State-of-the-Art Review of the Simulation of Dynamic Recrystallization. Metals. 2024; 14(11):1230. https://doi.org/10.3390/met14111230
Chicago/Turabian StyleLiu, Xin, Jiachen Zhu, Yuying He, Hongbin Jia, Binzhou Li, and Gang Fang. 2024. "State-of-the-Art Review of the Simulation of Dynamic Recrystallization" Metals 14, no. 11: 1230. https://doi.org/10.3390/met14111230
APA StyleLiu, X., Zhu, J., He, Y., Jia, H., Li, B., & Fang, G. (2024). State-of-the-Art Review of the Simulation of Dynamic Recrystallization. Metals, 14(11), 1230. https://doi.org/10.3390/met14111230