The Role of Precipitates in Hydrogen Embrittlement of Precipitation-Hardenable Aluminum Alloys
Abstract
:1. Introduction
2. Principal Factors Controlling Susceptibility to HE
2.1. Hydrogen Entry
2.1.1. Hydrogen Uptake During the Manufacturing Process
2.1.2. Hydrogen Gas Exposure
2.1.3. Corrosion-Induced Hydrogen Uptake
2.1.4. Artificial Hydrogen Charging
2.2. Interaction of Hydrogen with Microstructure
2.3. Mechanisms of HE
2.4. Methods for Hydrogen Detection and Evaluation of HE
2.4.1. Secondary Ion Mass Spectroscopy
2.4.2. Tritium Electron Microautoradiography
2.4.3. Atom Probe Tomography
2.4.4. Scanning Kelvin Probe Force Microscopy
2.4.5. Thermal Desorption Analysis
2.4.6. Electrochemical Permeation Test
2.4.7. Slow Strain Rate Test
3. HE of Various Aluminum Alloys
3.1. 2xxx Series Alloys (Al–Cu)
3.1.1. Microstructure
3.1.2. Corrosion-Induced Hydrogen Entry
3.1.3. Hydrogen Interaction with Microstructure
3.1.4. Effect of Hydrogen on Mechanical Properties
3.2. 6xxx Series Alloys (Al–Mg–Si)
3.2.1. Microstructure
3.2.2. Hydrogen Embrittlement
3.3. 7xxx Series Alloys (Al–Mg–Zn)
3.3.1. Microstructure
3.3.2. Hydrogen Interaction with Microstructure
3.3.3. Effect of Hydrogen on Mechanical Properties
3.4. Al–Li Alloys
3.4.1. Microstructure
3.4.2. Hydrogen Embrittlement
4. Current Knowledge and Challenges of Future Research
4.1. Mechanism of HE of Aluminum Alloys
4.2. Investigation of HE of Aluminum Alloys
4.3. Precipitates and Their Influence on HE Susceptibility
5. Conclusions
- Role of precipitates. Precipitates in aluminum alloys act as hydrogen traps, influencing material susceptibility to HE. The type of interface between precipitates and bulk material (coherent, semi-coherent, or incoherent) plays a critical role in hydrogen trapping.
- Impact of aging.
- ○
- Alloys in the under-aged state, dominated by coherent GP and GPB zones, exhibit the highest susceptibility to HE due to less effective hydrogen trapping.
- ○
- The presence of semi-coherent precipitates in peak-aged alloys leads to moderate susceptibility to HE. Stress fields around precipitates reduce hydrogen diffusion.
- ○
- Incoherent precipitates dominate in the over-aged state. Because these precipitates trap hydrogen strongly, the overall susceptibility to HE decreases compared to the under-aged stage.
- Microstructural evolution. As an alloy undergoes heat treatment, the evolution of secondary phase particles alters how hydrogen interacts with the matrix. Coherency strain and the presence of dislocations at precipitate interfaces are key factors.
- Hydrogen detection. Techniques such as TEMA, APT, and TDA have enhanced the understanding of hydrogen trapping and distribution in aluminum alloys, but further development is needed to accurately study hydrogen–microstructure interactions.
- Future directions. Standardizing hydrogen charging and detection methods is essential to improve the consistency of research outcomes. Understanding the exact hydrogen trapping mechanism and refining heat treatment processes could lead to the development of alloys with greater resistance to HE.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Habashi, F. Extractive Metallurgy of Aluminum. Encyclopedia of Aluminum and Its Alloys, Two-Volume Set (Print); CRC Press: Boca Raton, FL, USA, 2018; pp. 893–918. [Google Scholar]
- Chi, Y.; Gu, G.; Yu, H.; Chen, C. Laser surface alloying on aluminum and its alloys: A review. Opt. Laser. Eng. 2018, 100, 23–37. [Google Scholar] [CrossRef]
- Kumar, S.; Namboodhiri, T. Precipitation hardening and hydrogen embrittlement of aluminum alloy AA7020. Bull. Mater. Sci. 2011, 34, 311–321. [Google Scholar] [CrossRef]
- Jodeiri, A.; Ashjari, M. 7xxx aluminum alloys; strengthening mechanisms and heat treatment: A review. Mater. Sci. Eng. Int. J. 2018, 2, 49–53. [Google Scholar] [CrossRef]
- Smallman, R.E. Modern Physical Metallurgy; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Lavernia, E.; Rai, G.; Grant, N. Rapid solidification processing of 7xxx aluminium alloys: A review. Mater. Sci. Eng. 1986, 79, 211–221. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.; Tada, Y.; Toda, H.; Hang, S.; Uesugi, K.; Takeuchi, A.; Sakaguchi, N.; Watanabe, Y. Influences of hydrogen on deformation and fracture behaviors of high Zn 7XXX aluminum alloys. Int. J. Fract. 2016, 200, 13–29. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Vishwakarma, M. Hydrogen embrittlement in different materials: A review. Int. J. Hydrogen Energy 2018, 43, 21603–21616. [Google Scholar] [CrossRef]
- Safyari, M.; Moshtaghi, M.; Kuramoto, S. On the role of traps in the microstructural control of environmental hydrogen embrittlement of a 7xxx series aluminum alloy. J. Alloys Compd. 2021, 855, 157300. [Google Scholar] [CrossRef]
- Scully, J.R.; Young, G.A.; Smith, S.W. 19—Hydrogen embrittlement of aluminum and aluminum-based alloys. In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies; Gangloff, R.P., Somerday, B.P., Eds.; Woodhead Publishing: Sawston, UK, 2012; Volume 2, pp. 707–768. [Google Scholar]
- Lynch, S. Hydrogen embrittlement phenomena and mechanisms. Corros. Rev. 2012, 30, 105–123. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, S.; Ma, H.; Wang, H.; Hua, L.; Fu, S. Analysis of Hydrogen Embrittlement on Aluminum Alloys for Vehicle-Mounted Hydrogen Storage Tanks: A Review. Metals 2021, 11, 1303. [Google Scholar] [CrossRef]
- Symons, D.M. A comparison of internal hydrogen embrittlement and hydrogen environment embrittlement of X-750. Eng. Fract. Mech. 2001, 68, 751–771. [Google Scholar] [CrossRef]
- Tabereaux, A.T.; Peterson, R.D. Chapter 2.5—Aluminum Production. In Treatise on Process Metallurgy; Seetharaman, S., Ed.; Elsevier: Boston, MA, USA, 2014; pp. 839–917. [Google Scholar]
- Ratvik, A.P.; Mollaabbasi, R.; Alamdari, H. Aluminium production process: From Hall–Héroult to modern smelters. ChemTexts 2022, 8, 10. [Google Scholar] [CrossRef]
- Blackburn, P.E.; Gulbransen, E.A. Aluminum Reactions with Water Vapor, Dry Oxygen, Moist Oxygen, and Moist Hydrogen between 500° and 625 °C. J. Electrochem. Soc. 1960, 107, 944. [Google Scholar] [CrossRef]
- Vojtěch, D. Kovové Materiály; Vydavatelství VŠCHT: Prague, Czech Republic, 2006. [Google Scholar]
- Cheng, W.-Y.; Wu, S.-D.; Ma, H.-K. Study of tensile strength of aluminum alloy bottle with carbon fiber winding. Int. J. Hydrogen Energy 2015, 40, 12436–12446. [Google Scholar] [CrossRef]
- Gong, L.; Li, Z.; Jin, K.; Gao, Y.; Duan, Q.; Zhang, Y.; Sun, J. Numerical study on the mechanism of spontaneous ignition of high-pressure hydrogen during its sudden release into a tube. Saf. Sci. 2020, 129, 104807. [Google Scholar] [CrossRef]
- Yamabe, J.; Awane, T.; Murakami, Y. Hydrogen trapped at intermetallic particles in aluminum alloy 6061-T6 exposed to high-pressure hydrogen gas and the reason for high resistance against hydrogen embrittlement. Int. J. Hydrogen Energy 2017, 42, 24560–24568. [Google Scholar] [CrossRef]
- Liu, Q.; Atrens, A. A critical review of the influence of hydrogen on the mechanical properties of medium-strength steels. Corros. Rev. 2013, 31, 85–103. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.; Zhang, J.; Akiyama, E.; Wang, Y.; Song, X. Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention. Acta Metall. Sin.–Engl. 2020, 33, 759–773. [Google Scholar] [CrossRef]
- Murakami, Y.; Kanezaki, T.; Mine, Y. Hydrogen Effect against Hydrogen Embrittlement. Mettall. Mater. Trans. A 2010, 41, 2548–2562. [Google Scholar] [CrossRef]
- Takasaki, A. High-pressure hydrogen charging of TiAl-based titanium aluminides. Scr. Mater. 1998, 38, 687–692. [Google Scholar] [CrossRef]
- Safyari, M.; Moshtaghi, M.; Kuramoto, S. Environmental hydrogen embrittlement associated with decohesion and void formation at soluble coarse particles in a cold-rolled Al–Cu based alloy. Mater. Sci. Eng. A 2021, 799, 139850. [Google Scholar] [CrossRef]
- Kuramoto, S.; Okahana, J.; Kanno, M. Hydrogen Assisted Intergranular Crack Propagation during Environmental Embrittlement in an Al-Zn-Mg-Cu Alloy. Mater. Trans. 2001, 42, 2140–2143. [Google Scholar] [CrossRef]
- Itoh, G.; Watanabe, M.; Kuroyanagi, K.; Zhao, P.Z. Resistance to hydrogen embrittlement and behavior of hydrogen in 6000 series aluminum alloys. Mater. Sci. Forum 2010, 654–656, 2899–2902. [Google Scholar] [CrossRef]
- Kamoutsi, H.; Haidemenopoulos, G.N.; Bontozoglou, V.; Pantelakis, S. Corrosion-induced hydrogen embrittlement in aluminum alloy 2024. Corros. Sci. 2006, 48, 1209–1224. [Google Scholar] [CrossRef]
- Cottis, R.A. 2.10—Hydrogen Embrittlement. In Shreir’s Corrosion; Cottis, B., Graham, M., Lindsay, R., Lyon, S., Richardson, T., Scantlebury, D., Stott, H., Eds.; Elsevier: Oxford, UK, 2010; pp. 902–922. [Google Scholar]
- Hughes, A.; Muster, T.H.; Boag, A.; Glenn, A.M.; Luo, C.; Zhou, X.; Thompson, G.E.; McCulloch, D. Co-operative corrosion phenomena. Corros. Sci. 2010, 52, 665–668. [Google Scholar] [CrossRef]
- Guillaumin, V.; Mankowski, G. Localized corrosion of 2024 T351 aluminium alloy in chloride media. Corros. Sci. 1998, 41, 421–438. [Google Scholar] [CrossRef]
- Zhao, H.; Chakraborty, P.; Ponge, D.; Hickel, T.; Sun, B.; Wu, C.H.; Gault, B.; Raabe, D. Hydrogen trapping and embrittlement in high-strength Al alloys. Nature 2022, 602, 437–441. [Google Scholar] [CrossRef]
- Petroyiannis, P.V.; Kermanidis, A.T.; Papanikos, P.; Pantelakis, S.G. Corrosion-induced hydrogen embrittlement of 2024 and 6013 aluminum alloys. Theor. Appl. Fract. Mec. 2004, 41, 173–183. [Google Scholar] [CrossRef]
- Wan, D.; Deng, Y.; Barnoush, A. Hydrogen embrittlement effect observed by in-situ hydrogen plasma charging on a ferritic alloy. Scr. Mater. 2018, 151, 24–27. [Google Scholar] [CrossRef]
- Suzuki, H.; Kobayashi, D.; Hanada, N.; Takai, K.; Hagihara, Y. Existing State of Hydrogen in Electrochemically Charged Commercial-Purity Aluminum and Its Effects on Tensile Properties. Mater. Trans. 2011, 52, 1741–1747. [Google Scholar] [CrossRef]
- Kimura, A.; Birnbaum, H.K. Plastic softening by hydrogen plasma charging in pure iron. Scr. Metall. Mater. 1987, 21, 53–57. [Google Scholar] [CrossRef]
- Depover, T.; Hajilou, T.; Wan, D.; Wang, D.; Barnoush, A.; Verbeken, K. Assessment of the potential of hydrogen plasma charging as compared to conventional electrochemical hydrogen charging on dual phase steel. Mater. Sci. Eng. A 2019, 754, 613–621. [Google Scholar] [CrossRef]
- Rozenak, P. Defects producing formation of micro-cracks in aluminum during electrochemical charging with hydrogen. J. Alloys Compd. 2005, 400, 106–111. [Google Scholar] [CrossRef]
- Birnbaum, H.K.; Buckley, C.; Zeides, F.; Sirois, E.; Rozenak, P.; Spooner, S.; Lin, J.S. Hydrogen in aluminum. J. Alloys Compd. 1997, 253–254, 260–264. [Google Scholar] [CrossRef]
- Georgiou, E.P.; Cevallos, V.P.; Van der Donck, T.; Drees, D.; Meersschaut, J.; Panagopoulos, C.N.; Celis, J.P. Effect of cathodic hydrogen charging on the wear behavior of 5754 Al alloy. Wear 2017, 390–391, 295–301. [Google Scholar] [CrossRef]
- Qi, W.J.; Song, R.G.; Qi, X.; Li, H.; Wang, Z.X.; Wang, C.; Jin, J.R. Hydrogen Embrittlement Susceptibility and Hydrogen-Induced Additive Stress of 7050 Aluminum Alloy Under Various Aging States. J. Mater. Eng. Perform. 2015, 24, 3343–3355. [Google Scholar] [CrossRef]
- Dey, S.; Sivaprasad, S.; Das, N.; Chattoraj, I. Influence of Hydrogen on Fatigue Crack Growth in 7075 Aluminum Alloy. J. Mater. Eng. Perform. 2023, 32, 782–792. [Google Scholar] [CrossRef]
- Dey, S.; Chattoraj, I. Interaction of strain rate and hydrogen input on the embrittlement of 7075 T6 Aluminum alloy. Mat. Sci. Eng. A 2016, 661, 168–178. [Google Scholar] [CrossRef]
- Yang, X.; Luo, X.; Zhang, X.; Chen, J.; Gao, L. Characterization of hydrogen in a high strength aluminum alloy. Mater. Test. 2020, 62, 962–964. [Google Scholar] [CrossRef]
- Shen, L.; Chen, H.; Che, X.; Xu, L. Hydrogen embrittlement of the 7B05-T5 aluminum alloy for high-speed trains. Mater. Corros. 2020, 71, 70–76. [Google Scholar] [CrossRef]
- de Bonfils-Lahovary, M.-L.; Josse, C.; Laffont, L.; Blanc, C. Influence of hydrogen on the propagation of intergranular corrosion defects in 2024 aluminium alloy. Corros. Sci. 2019, 148, 198–205. [Google Scholar] [CrossRef]
- Lafouresse, M.C.; de Bonfils-Lahovary, M.-L.; Charvillat, C.; Oger, L.; Laffont, L.; Blanc, C. A Kelvin probe force microscopy study of hydrogen insertion and desorption into 2024 aluminum alloy. J. Alloys Compd. 2017, 722, 760–766. [Google Scholar] [CrossRef]
- Krishnan, M.A.; Raja, V.S. Role of temper conditions on the hydrogen embrittlement behavior of AA 7010. Corros. Sci. 2019, 152, 211–217. [Google Scholar] [CrossRef]
- Smith, S.W.; Scully, J.R. The identification of hydrogen trapping states in an Al-Li-Cu-Zr alloy using thermal desorption spectroscopy. Mettall. Mater. Trans. A 2000, 31, 179–193. [Google Scholar] [CrossRef]
- Saitoh, H.; Iijima, Y.; Tanaka, H. Hydrogen diffusivity in aluminium measured by a glow discharge permeation method. Acta Metall. Mater. 1994, 42, 2493–2498. [Google Scholar] [CrossRef]
- Young, G.A.; Scully, J.R. The diffusion and trapping of hydrogen in high purity aluminum. Acta Mater. 1998, 46, 6337–6349. [Google Scholar] [CrossRef]
- Scully, J.; Young, G.; Smith, S. Hydrogen Solubility, Diffusion and Trapping in High Purity Aluminum and Selected Al-Base Alloys. Mater. Sci. Forum 2000, 331–337, 1583–1600. [Google Scholar] [CrossRef]
- Zakroczymski, T. Adaptation of the electrochemical permeation technique for studying entry, transport and trapping of hydrogen in metals. Electrochim. Acta 2006, 51, 2261–2266. [Google Scholar] [CrossRef]
- Bond, G.M.; Robertson, I.M.; Birnbaum, H.K. Effects of hydrogen on deformation and fracture processes in high-ourity aluminium. Acta Metall. 1988, 36, 2193–2197. [Google Scholar] [CrossRef]
- Hebert, K.R. Trapping of Hydrogen Absorbed in Aluminum during Corrosion. Electrochim. Acta 2015, 168, 199–205. [Google Scholar] [CrossRef]
- Nagumo, M. Hydrogen related failure of steels—A new aspect. Mater. Sci. Technol. 2004, 20, 940–950. [Google Scholar] [CrossRef]
- Turnbull, A.; Hutchings, R.B.; Ferriss, D.H. Modelling of thermal desorption of hydrogen from metals. Mat. Sci. Eng. A 1997, 238, 317–328. [Google Scholar] [CrossRef]
- Pressouyre, G.M. Hydrogen traps, repellers, and obstacles in steel; Consequences on hydrogen diffusion, solubility, and embrittlement. Metall. Trans. A 1983, 14, 2189–2193. [Google Scholar] [CrossRef]
- Oger, L.; Andrieu, E.; Odemer, G.; Peguet, L.; Blanc, C. About the role of the hydrogen during stress corrosion cracking of a low-copper Al-Zn-Mg alloy. J. Alloys Compd. 2022, 900, 163391. [Google Scholar] [CrossRef]
- Adhikari, S.; Chumbley, L.S.; Chen, H.; Jean, Y.C.; Geiculescu, A.C.; Hillier, A.C.; Hebert, K.R. Interfacial voids in aluminum created by aqueous dissolution. Electrochim. Acta 2010, 55, 6093–6100. [Google Scholar] [CrossRef]
- Kozeschnik, E.; Sonderegger, B.; Holzer, I.; Rajek, J.; Cerjak, H. Computer Simulation of the Precipitate Evolution during Industrial Heat Treatment of Complex Alloys. Mater. Sci. Forum 2007, 539–543, 2431–2436. [Google Scholar] [CrossRef]
- Alexopoulos, N.D.; Velonaki, Z.; Stergiou, C.I.; Kourkoulis, S.K. The effect of artificial ageing heat treatments on the corrosion-induced hydrogen embrittlement of 2024 (Al–Cu) aluminium alloy. Corros. Sci. 2016, 102, 413–424. [Google Scholar] [CrossRef]
- Wang, Y.; Sharma, B.; Xu, Y.; Shimizu, K.; Fujihara, H.; Hirayama, K.; Takeuchi, A.; Uesugi, M.; Cheng, G.; Toda, H. Switching nanoprecipitates to resist hydrogen embrittlement in high-strength aluminum alloys. Nat. Commun. 2022, 13, 6860. [Google Scholar] [CrossRef]
- Safyari, M.; Khossossi, N.; Meisel, T.; Dey, P.; Prohaska, T.; Moshtaghi, M. New insights into hydrogen trapping and embrittlement in high strength aluminum alloys. Corros. Sci. 2023, 223, 111453. [Google Scholar] [CrossRef]
- Safyari, M.; Moshtaghi, M.; Hojo, T.; Akiyama, E. Mechanisms of hydrogen embrittlement in high-strength aluminum alloys containing coherent or incoherent dispersoids. Corros. Sci. 2022, 194, 109895. [Google Scholar] [CrossRef]
- Birnbaum, H.K.; Sofronis, P. Hydrogen-enhanced localized plasticity—A mechanism for hydrogen-related fracture. Mat. Sci. Eng. A 1994, 176, 191–202. [Google Scholar] [CrossRef]
- Lynch, S.P. Metallographic contributions to understanding mechanisms of environmentally assisted cracking. Metallography 1989, 23, 147–171. [Google Scholar] [CrossRef]
- Tarzimoghadam, Z.; Rohwerder, M.; Merzlikin, S.V.; Bashir, A.; Yedra, L.; Eswara, S.; Ponge, D.; Raabe, D. Multi-scale and spatially resolved hydrogen mapping in a Ni–Nb model alloy reveals the role of the δ phase in hydrogen embrittlement of alloy 718. Acta Mater. 2016, 109, 69–81. [Google Scholar] [CrossRef]
- Lynch, S. Metallographic and fractographic techniques for characterising and understanding hydrogen-assisted cracking of metals. In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies; Elsevier: Amsterdam, The Netherlands, 2012; pp. 274–346. [Google Scholar]
- Martin, M.L.; Dadfarnia, M.; Nagao, A.; Wang, S.; Sofronis, P. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. Acta Mater. 2019, 165, 734–750. [Google Scholar] [CrossRef]
- Lynch, S. Discussion of some recent literature on hydrogen-embrittlement mechanisms: Addressing common misunderstandings. Corros. Rev. 2019, 37, 377–395. [Google Scholar] [CrossRef]
- Magee, C.W.; Botnick, E.M. Hydrogen depth profiling using SIMS—Problems and their solutions. J. Vac. Sci. Technol. 1981, 19, 47–52. [Google Scholar] [CrossRef]
- Koyama, M.; Rohwerder, M.; Tasan, C.C.; Bashir, A.; Akiyama, E.; Takai, K.; Raabe, D.; Tsuzaki, K. Recent progress in microstructural hydrogen mapping in steels: Quantification, kinetic analysis, and multi-scale characterisation. Mater. Sci. Technol. 2017, 33, 1481–1496. [Google Scholar] [CrossRef]
- Bond, G.M.; Robertson, I.M.; Birnbaum, H.K. The influence of hydrogen on deformation and fracture processes in high-strength aluminum alloys. Acta Metall. 1987, 35, 2289–2296. [Google Scholar] [CrossRef]
- Rozenak, P.; Sirois, E.; Ladna, B.; Birnbaum, H.K.; Spooner, S. Characterization of hydrogen defects forming during chemical charging in the aluminum. J. Alloys Compd. 2005, 387, 201–210. [Google Scholar] [CrossRef]
- Larignon, C.; Alexis, J.; Andrieu, E.; Lacroix, L.; Odemer, G.; Blanc, C. Investigation of Kelvin probe force microscopy efficiency for the detection of hydrogen ingress by cathodic charging in an aluminium alloy. Scr. Mater. 2013, 68, 479–482. [Google Scholar] [CrossRef]
- Larignon, C.; Alexis, J.; Andrieu, E.; Lacroix, L.; Odemer, G.; Blanc, C. Combined Kelvin probe force microscopy and secondary ion mass spectrometry for hydrogen detection in corroded 2024 aluminium alloy. Electrochim. Acta 2013, 110, 484–490. [Google Scholar] [CrossRef]
- Iijima, Y.; Yoshida, S.; Saitoh, H. Hydrogen trapping in an Al-2.1 wt % Li alloy. J. Mater. Sci. 1995, 30, 1290–1294. [Google Scholar] [CrossRef]
- Iijima, Y.; Yoshida, S.-I.; Saitoh, H.; Tanaka, H.; Hirano, K.-I. Hydrogen trapping and repelling in an Al-6 wt% Zn-2 wt% Mg alloy. J. Mater. Sci. 1992, 27, 5735–5738. [Google Scholar] [CrossRef]
- Saitoh, H.; Iijima, Y.; Hirano, K. Behaviour of hydrogen in pure aluminium, Al-4 mass% Cu and Al-1 mass% Mg2Si alloys studied by tritium electron microautoradiography. J. Mater. Sci. 1994, 29, 5739–5744. [Google Scholar] [CrossRef]
- Saitoh, H.; Iijima, Y. Intensity of hydrogen trapping in pure Al, Al-4 wt% Cu and Al-1 wt% Mg2Si alloys measured by tritium release. J. Mater. Sci. Lett. 1994, 13, 1092–1094. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Liu, P.-Y.; Niu, R.; Devaraj, A.; Yen, H.-W.; Marceau, R.K.W.; Cairney, J.M. Atom Probe Tomography for the Observation of Hydrogen in Materials: A Review. Microsc. Microanal. 2022, 29, 1–15. [Google Scholar] [CrossRef]
- He, Q.; Jiang, J.; Wang, X.; Chen, J.; Shao, W.; Zhen, L. Insight into Intergranular Corrosion of the Aluminum Alloy 2024-T3: Effect of Pre-Charged Hydrogen. J. Electrochem. Soc. 2023, 170, 041501. [Google Scholar] [CrossRef]
- Gong, S.-H.; Lee, J.-Y.; Kim, Y.-J. Atom-Probe Tomographic and Electron Microscopic Analyses of a High Strength 7075-T4 Aluminum Alloy. J. Nanosci. Nanotechno. 2019, 19, 4182–4187. [Google Scholar] [CrossRef]
- Parvizi, R.; Marceau, R.K.W.; Hughes, A.E.; Tan, M.Y.; Forsyth, M. Atom Probe Tomography Study of the Nanoscale Heterostructure around an Al20Mn3Cu2 Dispersoid in Aluminum Alloy 2024. Langmuir 2014, 30, 14817–14823. [Google Scholar] [CrossRef]
- Sun, X.Y.; Zhang, B.; Lin, H.Q.; Zhou, Y.; Sun, L.; Wang, J.Q.; Han, E.H.; Ke, W. Atom probe tomographic study of elemental segregation at grain boundaries for a peak-aged Al–Zn–Mg alloy. Corros. Sci. 2014, 79, 1–4. [Google Scholar] [CrossRef]
- Safyari, M.; Rauscher, A.; Ucsnik, S.; Moshtaghi, M. Hydrogen trapping and permeability in carbon fiber reinforced aluminum alloys. Int. J. Hydrogen Energy 2024, 50, 199–210. [Google Scholar] [CrossRef]
- Oger, L.; Lafouresse, M.C.; Odemer, G.; Peguet, L.; Blanc, C. Hydrogen diffusion and trapping in a low copper 7xxx aluminium alloy investigated by Scanning Kelvin Probe Force Microscopy. Mat. Sci. Eng. A 2017, 706, 126–135. [Google Scholar] [CrossRef]
- Oger, L.; Malard, B.; Odemer, G.; Peguet, L.; Blanc, C. Influence of dislocations on hydrogen diffusion and trapping in an Al-Zn-Mg aluminium alloy. Mater. Des. 2019, 180, 107901. [Google Scholar] [CrossRef]
- Salmi, S.; Rhode, M.; Jüttner, S.; Zinke, M. Hydrogen determination in 22MnB5 steel grade by use of carrier gas hot extraction technique. Weld. World 2015, 59, 137–144. [Google Scholar] [CrossRef]
- Kamoutsi, H.; Haidemenopoulos, G.N.; Mavros, H.; Karantonidis, C.; Floratos, P.; Alhosani, Z.; Cho, P.; Anjum, D.H.; Ravaux, F.; Polychronopoulou, K. Effect of precipitate coherency on the corrosion-induced hydrogen trapping in 2024 aluminum alloy. Int. J. Hydrogen Energy 2021, 46, 34487–34497. [Google Scholar] [CrossRef]
- Charitidou, E.; Papapolymerou, G.; Haidemenopoulos, G.N.; Hasiotis, N.; Bontozoglou, V. Characterization of trapped hydrogen in exfoliation corroded aluminium alloy 2024. Scr. Mater. 1999, 41, 1327–1332. [Google Scholar] [CrossRef]
- Kamoutsi, H.; Haidemenopoulos, G.N.; Bontozoglou, V.; Petroyiannis, P.V.; Pantelakis, S.G. Effect of prior deformation and heat treatment on the corrosion-induced hydrogen trapping in aluminium alloy 2024. Corros. Sci. 2014, 80, 139–142. [Google Scholar] [CrossRef]
- Safyari, M.; Moshtaghi, M.; Kuramoto, S.; Hojo, T. Influence of microstructure-driven hydrogen distribution on environmental hydrogen embrittlement of an Al–Cu–Mg alloy. Int. J. Hydrogen Energy 2021, 46, 37502–37508. [Google Scholar] [CrossRef]
- Moshtaghi, M.; Safyari, M.; Kuramoto, S.; Hojo, T. Unraveling the effect of dislocations and deformation-induced boundaries on environmental hydrogen embrittlement behavior of a cold-rolled Al–Zn–Mg–Cu alloy. Int. J. Hydrogen Energy 2021, 46, 8285–8299. [Google Scholar] [CrossRef]
- Wei, F.-G.; Enomoto, M.; Tsuzaki, K. Applicability of the Kissinger’s formula and comparison with the McNabb–Foster model in simulation of thermal desorption spectrum. Comp. Mater. Sci. 2012, 51, 322–330. [Google Scholar] [CrossRef]
- Danielson, M.J. Use of the Devanathan–Stachurski cell to measure hydrogen permeation in aluminum alloys. Corros. Sci. 2002, 44, 829–840. [Google Scholar] [CrossRef]
- Zheng, C.-b.; Yan, B.-h.; Zhang, K.; Yi, G. Electrochemical investigation on the hydrogen permeation behavior of 7075-T6 Al alloy and its influence on stress corrosion cracking. Int. J. Min. Met. Mater. 2015, 22, 729–737. [Google Scholar] [CrossRef]
- Ai, J.-H.; Lim, M.L.C.; Scully, J.R. Effective Hydrogen Diffusion in Aluminum Alloy 5083-H131 as a Function of Orientation and Degree of Sensitization. Corrosion 2013, 69, 1225–1239. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.J.; Song, R.G.; Zhang, Y.; Wang, C.; Qi, X.; Li, H. Study on mechanical properties and hydrogen embrittlement susceptibility of 7075 aluminium alloy. Corros. Eng. Sci. Technol. 2015, 50, 480–486. [Google Scholar] [CrossRef]
- Chen, L.; Chen, W.; Liu, Z.; Shao, Y.; Hu, Z. Effects of hydrogen on mechanical properties and fracture mechanism of 8090 Al-Li alloy. Metall. Trans. A 1993, 24, 1355–1361. [Google Scholar] [CrossRef]
- Albrecht, J.; Thompson, A.W.; Bernstein, I.M. The role of microstructure in hydrogen-assisted fracture of 7075 aluminum. Metall. Trans. A 1979, 10, 1759–1766. [Google Scholar] [CrossRef]
- Prasad, K.S. Solid State Phase Transformations in AA 8090 Al-Li Alloys. Ph.D. Thesis, University of Roorkee, Roorkee, India, 1999. [Google Scholar]
- Sekhar, A.P.; Nandy, S.; Ray, K.K.; Das, D. Prediction of Aging Kinetics and Yield Strength of 6063 Alloy. J. Mater. Eng. Perform. 2019, 28, 2764–2778. [Google Scholar] [CrossRef]
- Moy, C.K.S.; Weiss, M.; Xia, J.; Sha, G.; Ringer, S.P.; Ranzi, G. Influence of heat treatment on the microstructure, texture and formability of 2024 aluminium alloy. Mat. Sci. Eng. A 2012, 552, 48–60. [Google Scholar] [CrossRef]
- Wang, S.C.; Starink, M.J. Two types of S phase precipitates in Al–Cu–Mg alloys. Acta Mater. 2007, 55, 933–941. [Google Scholar] [CrossRef]
- Winkelman, G.B.; Raviprasad, K.; Muddle, B.C. Orientation relationships and lattice matching for the S phase in Al–Cu–Mg alloys. Acta Mater. 2007, 55, 3213–3228. [Google Scholar] [CrossRef]
- Robson, J.D. Microstructural evolution in aluminium alloy 7050 during processing. Mat. Sci. Eng. A 2004, 382, 112–121. [Google Scholar] [CrossRef]
- Buha, J.; Lumley, R.N.; Crosky, A.G.; Hono, K. Secondary precipitation in an Al–Mg–Si–Cu alloy. Acta Mater. 2007, 55, 3015–3024. [Google Scholar] [CrossRef]
- Chauhan, K. Influence of Heat Treatment on the Mechanical Properties of Aluminium Alloys (6xxx Series): A Literature Review. Int. J. Eng. Res. Technol. 2017, 6, 386–389. [Google Scholar] [CrossRef]
- Heat Treating of Nonferrous Alloys; ASM International: Almere, The Netherlands, 2016.
- Wang, L.; Sun, J.; Zhu, X.; Cheng, L.; Shi, Y.; Guo, L.; Yan, B. Effects of T2 Heat Treatment on Microstructure and Properties of the Selective Laser Melted Aluminum Alloy Samples. Materials 2018, 11, 66. [Google Scholar] [CrossRef] [PubMed]
- Liscic, B.; Tensi, H.M.; Canale, L.C.; Totten, G.E. Quenching Theory and Technology; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Özyürek, D.; Tunçay, T.; Kaya, H. The Effects of T5 and T6 Heat Treatments on Wear Behaviour of AA6063 Alloy. High Temp. Mater. Process. 2014, 33, 231–237. [Google Scholar] [CrossRef]
- Rambabu, P.; Eswara Prasad, N.; Kutumbarao, V.V.; Wanhill, R.J.H. Aluminium Alloys for Aerospace Applications. In Aerospace Materials and Material Technologies: Volume 1: Aerospace Materials; Prasad, N.E., Wanhill, R.J.H., Eds.; Springer Singapore: Singapore, 2017; pp. 29–52. [Google Scholar]
- Lacroix, L.; Ressier, L.; Blanc, C.; Mankowski, G. Combination of AFM, SKPFM, and SIMS to Study the Corrosion Behavior of S-phase particles in AA2024-T351. J. Electrochem. Soc. 2008, 155, C131. [Google Scholar] [CrossRef]
- Bagaryatsky, Y.A. Structural changes on aging Al-Cu-Mg alloys. Dokl. Akad. SSSR 1952, 87, 397–559. [Google Scholar]
- Ringer, S.P.; Sakurai, T.; Polmear, I.J. Origins of hardening in aged Al-Gu-Mg-(Ag) alloys. Acta Mater. 1997, 45, 3731–3744. [Google Scholar] [CrossRef]
- Kovarik, L.; Court, S.A.; Fraser, H.L.; Mills, M.J. GPB zones and composite GPB/GPBII zones in Al–Cu–Mg alloys. Acta Mater. 2008, 56, 4804–4815. [Google Scholar] [CrossRef]
- Shen, Z.; Ding, Q.; Liu, C.; Wang, J.; Tian, H.; Li, J.; Zhang, Z. Atomic-scale mechanism of the θ″→θ′ phase transformation in Al-Cu alloys. J. Mater. Sci. Technol. 2017, 33, 1159–1164. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, Y.; Zhang, Z. Theoretical and experimental study of precipitation and coarsening kinetics of θ′ phase in Al–Cu alloy. Vacuum 2021, 189, 110263. [Google Scholar] [CrossRef]
- Jones, D.A. Principles and Prevention of Corrosion; Prentice Hall: Hoboken, NJ, USA, 1996. [Google Scholar]
- Kosari, A.; Zandbergen, H.; Tichelaar, F.; Visser, P.; Taheri, P.; Terryn, H.; Mol, J.M.C. In-situ nanoscopic observations of dealloying-driven local corrosion from surface initiation to in-depth propagation. Corros. Sci. 2020, 177, 108912. [Google Scholar] [CrossRef]
- Scamans, G.M. Embrittlement of Aluminum Alloys Exposed to Water Vapour. Environ.-Sensitive Fract. Eng. Mater. 1977, 464-383. [Google Scholar]
- Shao, S.; Akasheh, F.; Wang, J.; Liu, Y. Alternative misfit dislocations pattern in semi-coherent FCC {100} interfaces. Acta Mater. 2018, 144, 177–186. [Google Scholar] [CrossRef]
- Alexopoulos, N.D.; Dietzel, W. Effect of corrosion-induced hydrogen embrittlement and its degradation impact on tensile properties and fracture toughness of (Al-Cu-Mg) 2024 alloy. Procedia Struct. Integr. 2016, 2, 573–580. [Google Scholar] [CrossRef]
- Zeides, F.; Roman, I. Study of hydrogen embrittlement in aluminium alloy 2024 in the longitudinal direction. Mat. Sci. Eng. A 1990, 125, 21–30. [Google Scholar] [CrossRef]
- Kermanidis, A.T.; Stamatelos, D.G.; Labeas, G.N.; Pantelakis, S.G. Tensile behaviour of corroded and hydrogen embrittled 2024 T351 aluminum alloy specimen. Theor. Appl. Fract. Mec. 2006, 45, 148–158. [Google Scholar] [CrossRef]
- Feng, Z.; Luo, X.; Chen, Y.; Chen, N.; Wu, G. Surface severe plastic deformation induced solute and precipitate redistribution in an Al-Cu-Mg alloy. J. Alloys Compd. 2019, 773, 585–596. [Google Scholar] [CrossRef]
- Larignon, C.; Alexis, J.; Andrieu, E.; Odemer, G.; Blanc, C. The contribution of hydrogen to the corrosion of 2024 aluminium alloy exposed to thermal and environmental cycling in chloride media. Corros. Sci. 2013, 69, 211–220. [Google Scholar] [CrossRef]
- Hirth, S.M.; Marshall, G.J.; Court, S.A.; Lloyd, D.J. Effects of Si on the aging behaviour and formability of aluminium alloys based on AA6016. Mat. Sci. Eng. A 2001, 319–321, 452–456. [Google Scholar] [CrossRef]
- Baruah, M.; Borah, A. Processing and precipitation strengthening of 6xxx series aluminium alloys: A review. Int. J. Mater. Sci 2020, 1, 40–48. [Google Scholar] [CrossRef]
- Guo, M.X.; Zhang, X.K.; Zhang, J.S.; Zhuang, L.Z. Effect of Zn addition on the precipitation behaviors of Al–Mg–Si–Cu alloys for automotive applications. J. Mater. Sci. 2017, 52, 1390–1404. [Google Scholar] [CrossRef]
- Matsuda, K.; Sakaguchi, Y.; Miyata, Y.; Uetani, Y.; Sato, T.; Kamio, A.; Ikeno, S. Precipitation sequence of various kinds of metastable phases in Al-1.0mass% Mg2Si-0.4mass% Si alloy. J. Mater. Sci. 2000, 35, 179–189. [Google Scholar] [CrossRef]
- Gaber, A.; Ali, A.M.; Matsuda, K.; Kawabata, T.; Yamazaki, T.; Ikeno, S. Study of the developed precipitates in Al–0.63Mg–0.37Si–0.5Cu(wt.%) alloy by using DSC and TEM techniques. J. Alloys Compd. 2007, 432, 149–155. [Google Scholar] [CrossRef]
- Ichitani, K.; Koyama, K. Effect of experimental humidity on fatigue fracture of 6XXX-series aluminum alloys. In Furukawa-Sky Review/Furukawa-Sky Review; Furukawa Sky Co., Ltd.: Tokyo, Japan, 2012; pp. 15–21. [Google Scholar]
- Dumolt, S.D.; Laughlin, D.E.; Williams, J.C. Formation of a modified β′ phase in aluminum alloy 6061. Scr. Metall. Mater. 1984, 18, 1347–1350. [Google Scholar] [CrossRef]
- Ando, M.; Kanno, M.; Ichitani, K.; Motegi, T. Effects of alloy compositions on hydrogen embrittlement of Al–Mg–Si based alloys. J. Jpn. Inst. Light Met. 2009, 59, 81–86. [Google Scholar] [CrossRef]
- Osaki, S.; Kondo, H.; Kinoshita, K. Contribution of hydrogen embrittlement to SCC process in excess Si type Al-Mg-Si alloys. Mater. Trans. 2006, 47, 1127–1134. [Google Scholar] [CrossRef]
- Horikawa, K.; Matsubara, T.; Kobayashi, H. Hydrogen charging of Al–Mg–Si-based alloys by friction in water and its effect on tensile properties. Mat. Sci. Eng. A 2019, 764, 138199. [Google Scholar] [CrossRef]
- Hachet, G.; Sauvage, X. Influence of hydrogen vacancy interactions on natural and artificial ageing of an AlMgSi alloy. J. Alloys Compd. 2022, 905, 164251. [Google Scholar] [CrossRef]
- Priya, P.; Johnson, D.R.; Krane, M.J.M. Precipitation during cooling of 7XXX aluminum alloys. Comp. Mater. Sci. 2017, 139, 273–284. [Google Scholar] [CrossRef]
- Liao, Y.-g.; Han, X.-q.; Zeng, M.-x.; Jin, M. Influence of Cu on microstructure and tensile properties of 7XXX series aluminum alloy. Mater. Des. 2015, 66, 581–586. [Google Scholar] [CrossRef]
- Christodoulou, L.; Flower, H.M. Hydrogen embrittlement and trapping in Al6%-Zn-3%-Mg. Acta Metall. 1980, 28, 481–487. [Google Scholar] [CrossRef]
- Gest, R.; Troiano, A. Stress corrosion and hydrogen embrittlement in an aluminum alloy. Corrosion 1974, 30, 274–279. [Google Scholar] [CrossRef]
- El-Amoush, A.S. An investigation of hydrogen-induced hardening in 7075-T6 aluminum alloy. J. Alloys Compd. 2008, 465, 497–501. [Google Scholar] [CrossRef]
- Thompson, A.W.; Bernstein, I.M. The Role of Metallurgical Variables in Hydrogen-Assisted Environmental Fracture. In Advances in Corrosion Science and Technology; Fontana, M.G., Staehle, R.W., Eds.; Springer US: Boston, MA, USA, 1980; pp. 53–175. [Google Scholar]
- Takano, N. Hydrogen diffusion and embrittlement in 7075 aluminum alloy. Mat. Sci. Eng. A 2008, 483–484, 336–339. [Google Scholar] [CrossRef]
- Thompson, A.W. The behavior of sensitized 309S stainless steel in hydrogen. Mater. Sci. Eng. 1974, 14, 253–264. [Google Scholar] [CrossRef]
- Thompson, A.W. Hydrogen embrittlement of stainless steels by lithium hydride. Metall. Trans. 1973, 4, 2819–2825. [Google Scholar] [CrossRef]
- Louthan, M.R.; Caskey, G.R.; Donovan, J.A.; Rawl, D.E. Hydrogen embrittlement of metals. Mater. Sci. Eng. 1972, 10, 357–368. [Google Scholar] [CrossRef]
- Aboura, Y.; Garner, A.J.; Euesden, R.; Barrett, Z.; Engel, C.; Holroyd, N.J.H.; Prangnell, P.B.; Burnett, T.L. Understanding the environmentally assisted cracking (EAC) initiation and propagation of new generation 7xxx alloys using slow strain rate testing. Corros. Sci. 2022, 199, 110161. [Google Scholar] [CrossRef]
- Bal, B.; Okdem, B.; Bayram, F.C.; Aydin, M. A detailed investigation of the effect of hydrogen on the mechanical response and microstructure of Al 7075 alloy under medium strain rate impact loading. Int. J. Hydrogen Energy 2020, 45, 25509–25522. [Google Scholar] [CrossRef]
- Euesden, R.T.; Aboura, Y.; Garner, A.J.; Jailin, T.; Grant, C.; Barrett, Z.; Engel, C.; Shanthraj, P.; Holroyd, N.J.H.; Prangnell, P.B.; et al. In-situ observation of environmentally assisted crack initiation and short crack growth behaviour of new-generation 7xxx series alloys in humid air. Corros. Sci. 2023, 216, 111051. [Google Scholar] [CrossRef]
- Yusheng, C.; Ziyong, Z.; Sue, L.; Wei, K.; Yun, Z.; Wanming, Z. The corrosion behaviors and mechanism of 1420 Al-Li alloy. Scr. Mater. 1996, 34, 781–786. [Google Scholar] [CrossRef]
- Starke, E.A.; Sanders, T.H.; Palmer, I.G. New Approaches to Alloy Development in the Al-Li System. JOM 1981, 33, 24–33. [Google Scholar] [CrossRef]
- Prasad, K.S.; Prasad, N.E.; Gokhale, A.A. Chapter 4—Microstructure and Precipitate Characteristics of Aluminum–Lithium Alloys. In Aluminum-lithium Alloys; Eswara Prasad, N., Gokhale, A.A., Wanhill, R.J.H., Eds.; Butterworth-Heinemann: Boston, MA, USA, 2014; pp. 99–137. [Google Scholar]
- Gutierrez-Urrutia, I.; Gutierrez-Saiz, S.; Bocanegra, E.H.; Nó, M.; San Juan, J. Analysis of delta Prime precipitation in Al-Li alloys. Mater. Sci. Forum 2002, 396–402, 881–886. [Google Scholar] [CrossRef]
- Bennett, C.G.; Lynch, S.P.; Nethercott, R.B.; Kerr, M.; Sweet, E.D. Fracture toughness of 2090 Al–Li–Cu extrusions with high and low hydrogen contents. Mat. Sci. Eng. A 1998, 247, 32–39. [Google Scholar] [CrossRef]
- Meletis, E.I.; Huang, W. The role of the T1 phase in the pre-exposure and hydrogen embrittlement of AlLiCu alloys. Mater. Sci. Eng. A 1991, 148, 197–209. [Google Scholar] [CrossRef]
- Wang, X.; Li, G.; He, Q.; Xiao, E.; Jiang, J.; Shao, W.; Zhen, L. Hydrogen trapping and embrittlement susceptibility in Al-Cu-Li alloys. Corros. Sci. 2024, 226, 111628. [Google Scholar] [CrossRef]
- Thakur, C.; Balasubramaniam, R. Hydrogen embrittlement of aged and retrogressed-reaged Al-Li-Cu-Mg alloys. Acta Mater. 1997, 45, 1323–1332. [Google Scholar] [CrossRef]
Material | Solution | Current Density [mA·cm−2] | Time [h] | Reference |
---|---|---|---|---|
Al 99.999% | 1 N H2SO4 + 0.25 g·L−1 NaAsO2 | 50 | 24 | [38] |
Al 99.999% | 1 N H2SO4 + NaAsO2, pH 1, 35 °C | 50 | 24 | [39] |
5754 | 3 N HCl | 25–300 | 2 | [40] |
7050 | 1 N H2SO4 + As2O3 | 20 | 6–24 | [41] |
7075 | 3.5% NaCl | 1 | NA | [42] |
7075 | 3.5% NaCl + 0.01 N NaOH | 1–10 | NA | [43] |
7085 | 5% (NH4)2SO4 | 5 | 480 | [44] |
7B05-T5 | 0.1 N HCl + 150 mg·L−1 SC(NH2)2 | 2 | 96 | [45] |
Potential [V vs. SCE] | ||||
2024 | 10 mN H2SO4 | −0.8 | 40 | [46] |
2024 | 10 mN H2SO4 | −0.8 | 5–48 | [47] |
7075 | 3.5% NaCl | −1.1 | NA | [48] |
Al–Zn–Mg | H2SO4, pH 2 | −1.45 | 72 | [49] |
Alloy | Heating Rate [K·h−1] | Heating Range [°C] | Reference |
---|---|---|---|
2024 | 300 | RT–600 | [92] |
2024 | 300 | RT–600 | [28] |
2024 | 600 | RT–600 | [91,93] |
2090 | 600 | RT–600 | [49] |
2219 | 100, 200, 300 | 100–550 | [25] |
2xxx | 200 | 100–550 | [94] |
6061 | 1200 | 100–570 | [27] |
7xxx | 300 | 100–550 | [9] |
7xxx | 100, 200, 300 | RT–550 | [65] |
7xxx | 120, 240, 360 | 100–550 | [64] |
7xxx | 100, 200, 300 | 100–550 | [95] |
7xxx | 960 | RT–400 | [32] |
7xxx | 90 | RT–550 | [63] |
Code | Description | Source |
---|---|---|
T1 | Cooled from an elevated temperature and naturally aged | [111] |
T2 | Cooled from an elevated temperature, cold worked, and naturally aged | [112] |
T3 | Solution heat-treated, cold worked, and then naturally aged | [113] |
T4 | Solution heat-treated and naturally aged to a stable condition | [113] |
T5 | Cooled from an elevated temperature shaping process and artificially aged | [114] |
T6 | Solution heat-treated and artificially aged | [113] |
T7 | Solution heat-treated and over-aged | [113] |
T8 | Solution heat-treated, cold worked, and artificially aged | [113] |
T9 | Solution heat-treated, artificially aged, and then cold worked | [113] |
T10 | Cooled from an elevated temperature, artificially aged, then cold worked | [115] |
Temperature [°C] | Binding Energy [kJ/mol] | Source of Desorbed Hydrogen | Reference |
---|---|---|---|
100 | NA | Hydrogen at interstitial sites | [10,28,92] |
197 | NA | Lattice | [25] |
200 | NA | Semi-coherent phases and dispersoids interface | [92] |
209 | NA | Hydrogen at interstitial sites | [94] |
291 | 19.30 | Al2Cu fine particles | [25] |
374 | 28.38 | Dislocations | [25] |
382 | 15.92 | Dislocations | [94] |
410 | NA | Decomposition of MgH2 | [92,124] |
457 | 40.32 | Al2Cu coarse particles | [25] |
458 | 35.99 | S′ phase | [94] |
500 | NA | S phase | [92,93] |
505 | 50.89 | Vacancies | [94] |
518 | 50.89 | Vacancies | [25] |
Heat Treatment Stage | Microstructure State | Ductility Loss | Explanation | Reference |
---|---|---|---|---|
Under-aged | GPB zones | 26% | Hydrogen diffusion through grain boundaries, hydrogen traps near grain boundaries | [62,77] |
Peak-aged | S′ and S″ phases | 11% | Coherent and semi-coherent phases, hydrogen trapped by stress fields around precipitate | [62,91] |
Over-aged | S phase | 22% | Precipitates incoherent with matrix, strong hydrogen traps | [62,91] |
Charging Time | Hydrogen Content | Ductility Loss |
---|---|---|
7 h | 16 wppm | 50% |
24 h | 22 wppm | 75% |
48 h | 27 wppm | 70% |
Material | Ductility Loss | Reference |
---|---|---|
6061 | 7% | [138] |
6070 | 7% | [138] |
6013 | 7% | [138] |
6066 | 13% | [138] |
6061 0.1% Fe | 18% | [140] |
6062 0.2% Fe | none | [140] |
6063 0.7% Fe | none | [140] |
6xxx (0.7 wt.% Mg, 1.1 wt.% Si) | 17% | [139] |
Heat Treatment Stage | Microstructure State | Effect on HE | Explanation |
---|---|---|---|
Under-aged | GP zones (coherent precipitates) at grain boundaries | Largest | Passing dislocations can cut GP zones, local softening, formation of concentrated slip bands |
Peak-aged | Mixture of GP zones and η′; η at grain boundaries; precipitate-free zones formation | Moderate | Mixture of GP zones and semi-coherent precipitates causes non-homogeneous slip distribution; homogeneity improves with increasing strain |
Over-aged | Coarse η′ particles in matrix; large η and T-phase at grain boundaries; growth of precipitate-free zones | Smallest | Semi-coherent precipitates result in a homogeneous slip distribution |
Under-Aged | Peak-Aged | Over-Aged | |
---|---|---|---|
Uncharged [%] | 28 | 29 | 33 |
Charged [%] | 15 | 20 | 28 |
Difference [%] | 48 | 30 | 16 |
Air Cooled | Water Quenched | |
---|---|---|
Uncharged | 0.19 | 0.19 |
Charged | 0.19 | 0.14 |
Difference [%] | 0 | 26 |
Trapping Site | Binding Energy [kJ/mol] |
---|---|
Interstitial | 0.0 |
Li in solid solution | 2.6 |
δ′ | 25.2 |
Dislocations | 31.7 |
High-angle grain boundaries | 35.0 |
T1 | 38.0 |
Heat Treatment Stage | Ductility Loss | Short Explanation |
---|---|---|
Under-aged | 25% | Planar slip favors hydrogen transport by dislocations and also causes an increase in the surface area |
Peak-aged | 17% | Optimum distribution of δ′ phase, which acts as a strong hydrogen trap |
Over-aged | 23% | Strain on GB developed, leading to an increase in the critical concentration of hydrogen |
2xxx | 6xxx | 7xxx | Al–Li | |
---|---|---|---|---|
Under-aged, UA | 26 | x | 48 | 25 |
Peak-aged, PA | 11 | 0–17 | 30 | 17 |
Over-aged, OA | 22 | x | 16 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Košová Altnerová, T.; Rudomilova, D.; Novák, P.; Prošek, T. The Role of Precipitates in Hydrogen Embrittlement of Precipitation-Hardenable Aluminum Alloys. Metals 2024, 14, 1287. https://doi.org/10.3390/met14111287
Košová Altnerová T, Rudomilova D, Novák P, Prošek T. The Role of Precipitates in Hydrogen Embrittlement of Precipitation-Hardenable Aluminum Alloys. Metals. 2024; 14(11):1287. https://doi.org/10.3390/met14111287
Chicago/Turabian StyleKošová Altnerová, Terezie, Darja Rudomilova, Pavel Novák, and Tomáš Prošek. 2024. "The Role of Precipitates in Hydrogen Embrittlement of Precipitation-Hardenable Aluminum Alloys" Metals 14, no. 11: 1287. https://doi.org/10.3390/met14111287