Identification and Evolution of Intermetallic Compounds Formed at the Interface between In-48Sn and Cu during Liquid Soldering Reactions
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Soldering Sample Preparation
2.2. Electron Microscopy Analysis
2.3. IMC Thickness Measurement
3. Experimental Results and Discussion
3.1. Interfacial IMC Evolution during Soldering at Different Temperatures
3.2. Growth Kinetics of the Interfacial IMC Layer
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abtew, M.; Selvaduray, G. Lead-free solders in microelectronics. Mater. Sci. Eng. R 2000, 27, 95–141. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.; Conway, P.P. Characteristics of intermetallics and micromechanical properties during thermal ageing of Sn–Ag–Cu flip-chip solder interconnects. Mater. Sci. Eng. A 2005, 391, 95–103. [Google Scholar] [CrossRef]
- Li, Y.; Wong, C.P. Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications. Mater. Sci. Eng. R 2006, 51, 1–35. [Google Scholar] [CrossRef]
- Liu, Y.; Tu, K.N. Low melting point solders based on Sn, Bi, and In elements. Mater. Today Adv. 2020, 8, 100115. [Google Scholar] [CrossRef]
- Kim, D.G.; Jung, S.B. Interfacial reactions and growth kinetics for intermetallic compound layer between In–48Sn solder and bare Cu substrate. J. Alloys Compd. 2005, 386, 151–156. [Google Scholar] [CrossRef]
- Mei, Z.; Morris, J.W. Characterization of eutectic Sn-Bi solder joints. J. Electron. Mater. 1992, 21, 599–607. [Google Scholar] [CrossRef]
- Huang, C.Y.; Chen, S.W. Interfacial reactions in In-Sn/Ni couples and phase equilibria of the In-Sn-Ni system. J. Electron. Mater. 2002, 31, 152–160. [Google Scholar] [CrossRef]
- Zhou, J.; Tan, X.F.; McDonald, S.D.; Nogita, K. Mechanical Properties and Microstructure of Binary In-Sn Alloys for Flexible Low Temperature Electronic Joints. Materials 2022, 15, 8321. [Google Scholar] [CrossRef]
- Romig, A.D., Jr.; Yost, F.G. Proceedings Conference Microbeam Analysis; San Francisco Press: San Franciso, CA, USA, 1984; pp. 87–92. [Google Scholar]
- Vianco, P.T.; Hlava, P.F.; Kilgo, A.C. Intermetallic compound layer formation between copper and hot-dipped 100In, 50In-50Sn, 100Sn, and 63Sn-37Pb coatings. J. Electron. Mater. 1994, 23, 583–594. [Google Scholar] [CrossRef]
- Chuang, T.H.; Chang, S.Y.; Tsao, L.C.; Weng, W.P.; Wu, H.M. Intermetallic compounds formed during the reflow of In-49Sn solder ball-grid array packages. J. Electron. Mater. 2003, 32, 195–200. [Google Scholar] [CrossRef]
- Roy, R.; Sen, S.K.; Sen, S. The formation of intermetallics in Cu/In thin films. J. Mater. Res. 1992, 7, 1376–1386. [Google Scholar] [CrossRef]
- Roy, R.; Pradhan, S.K.; De, M.; Sen, S.K. Structural characterization of the CuIn intermetallic phase produced by interfacial reactions in Cu/In bimetallic films. Thin Solid Films 1993, 229, 140–142. [Google Scholar] [CrossRef]
- Sommadossi, S.; Huici, J.; Khanna, P.K.; Gust, W.; Mittemeijer, E.J. Mechanical properties of Cu/In–48 Sn/Cu diffusion-soldered joints. Int. J. Mater. Res. 2002, 93, 496–501. [Google Scholar] [CrossRef]
- Wu, H.F.; Chiang, M.J.; Chuang, T.H. Selective formation of intermetallic compounds in Sn-20In-0.8 Cu ball grid array solder joints with Au/Ni surface finishes. J. Electron. Mater. 2004, 33, 940–947. [Google Scholar] [CrossRef]
- Subramanian, K.N.; Chen, S.W.; Wang, C.H.; Lin, S.K.; Chiu, C.N. Phase diagrams of Pb-free solders and their related materials systems. J. Mater. Sci. Mater. Electron. 2007, 18, 19–37. [Google Scholar]
- Shang, P.J.; Liu, Z.Q.; Li, D.X.; Shang, J.K. Intermetallic compound identification and Kirkendall void formation in eutectic SnIn/Cu solder joint during solid-state aging. Philos. Mag. Lett. 2011, 91, 410–417. [Google Scholar] [CrossRef]
- Pawar, K.; Dixit, P. Investigation of Cu-Sn-Cu transient liquid phase bonding for microsystems packaging. Mater. Manuf. Process. 2023, 38, 284–294. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Chen, C.; Lu, X. Effect of AlN on the microstructure evolution of Cu/Sn58Bi/Cu solder joints for 3D packaging at different bonding times. J. Mater. 2023, 25, 4488–4496. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Zhang, Y.; Xu, F.; Qiao, J.; Lu, W.; Yu, B. Microstructure evolution and mechanical properties of the In–Sn–20Cu composite particles TLP bonding solder joints. Appl. Phys. 2020, 126, 343. [Google Scholar] [CrossRef]
- Sommadossi, S.; Gust, W.; Mittemeijer, E.J. Characterization of the reaction process in diffusion-soldered Cu/In–48 at.% Sn/Cu joints. Mater. Chem. Phys. 2003, 77, 924–929. [Google Scholar] [CrossRef]
- Sommadossi, S.; Guillermet, A.F. Interface reaction systematics in the Cu/In–48Sn/Cu system bonded by diffusion soldering. Intermetallics 2007, 15, 912–917. [Google Scholar] [CrossRef]
- Che, G.C.; Ellner, M. Powder crystal data for the high-temperature phases Cu4In, Cu9In4(h) and Cu2In(h). Powder Diffr. 1992, 7, 107–108. [Google Scholar] [CrossRef]
- Burkhardt, W.; Schubert, K. Über messingartige Phasen mit A3-verwandter Struktur. Int. J. Mater. Res. 1959, 50, 442–452. [Google Scholar] [CrossRef]
- Liu, X.J.; Liu, H.S.; Ohnuma, I.; Kainuma, R.; Ishida, K.; Itabashi, S.; Yamaguchi, K. Experimental determination and thermodynamic calculation of the phase equilibria in the Cu-In-Sn system. J. Electron. Mater. 2001, 30, 1093–1103. [Google Scholar] [CrossRef]
- Lin, S.K.; Chung, T.Y.; Chen, S.W.; Chang, C.H. 250° C isothermal section of ternary Sn-In-Cu phase equilibria. J. Mater. Res. 2009, 24, 2628–2637. [Google Scholar] [CrossRef]
- Tian, F.F.; Pang, X.Y.; Xu, B.; Liu, Z.Q. Evolution and growth mechanism of Cu2(In,Sn) formed between In-48Sn solder and polycrystalline Cu during long-time liquid-state aging. J. Electron. Mater. 2020, 49, 2651–2659. [Google Scholar] [CrossRef]
- Larsson, A.K.; Stenberg, L.; Lidin, S. The superstructure of domain-twinned η′-Cu6Sn5. Acta Crystall. 1994, 50, 636–643. [Google Scholar] [CrossRef]
- Larsson, A.K.; Stenberg, L.; Lidin, S. Crystal structure modulations in η-Cu5Sn4. Z. Krist. 1995, 210, 832–837. [Google Scholar] [CrossRef]
- Christy, A.G.; Larsson, A.K. Computer Simulation of Modulated Structures and Diffuse Scattering inB8-type (Co, Ni, Cu)1+x(Ge, Sn) Phases. J. Solid State Chem. 1998, 135, 269–281. [Google Scholar] [CrossRef]
- Du, Y.; Qiao, Y.; Ren, X.; Lai, Y.; Zhao, N. Characterization of Sn-xIn Solders and Thermomigration-Induced Interfacial IMC Growth of Cu/Sn-xIn/Cu Micro Solder Joints. Electronics 2023, 12, 1899. [Google Scholar] [CrossRef]
- Chang, F.L.; Lin, Y.H.; Hung, H.T.; Kao, C.W.; Kao, C.R. Artifact-Free Microstructures in the Interfacial Reaction between Eutectic In-48Sn and Cu Using Ion Milling. Materials 2023, 16, 3290. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.F.; Li, C.F.; Zhou, M.; Liu, Z.Q. The interfacial reaction between In-48Sn solder and polycrystalline Cu substrate during solid state aging. J. Alloys Compd. 2018, 740, 500–509. [Google Scholar] [CrossRef]
- Suh, M.S.; Park, C.J.; Kwon, H.S. Growth kinetics of Cu–Sn intermetallic compounds at the interface of a Cu substrate and 42Sn–58Bi electrodeposits, and the influence of the intermetallic compounds on the shear resistance of solder joints. Mater. Chem. Phys. 2008, 110, 95–99. [Google Scholar] [CrossRef]
- Ma, C.H.; Swalin, R.A. A study of solute diffusion in liquid tin. Acta Metall. 1960, 8, 388–395. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, L.; Lu, K.J.; Zhang, Y.C.; Xu, Y.H.; Xu, F.; Gao, H.M. IMC growth and mechanical properties of Cu/In-48Sn/Cu solder joints. J. Electron. Mater. 2021, 50, 3326–3333. [Google Scholar] [CrossRef]
- Schaefer, M.; Fournelle, R.A.; Liang, J. Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffusion control. J. Electron. Mater. 1998, 27, 1167–1176. [Google Scholar] [CrossRef]
- Wang, J.; Mao, D.; Shi, L.; Zhang, W.; Zhang, X. Effect of Zinc Addition on the Microstructure, Thermal and Mechanical Properties of Indium-Tin−x Zinc Alloys. J. Electron. Mater. 2019, 48, 817–826. [Google Scholar] [CrossRef]
Zone Axis 1 | Zone Axis 2 | Experimental Values (°) | Theoretical Values (°) |
---|---|---|---|
[311] | [111] | 29.50 | 28.78 |
[211] | [433] | 11.42 | 11.72 |
[433] | [522] | 17.19 | 16.29 |
Soldering Temperature (°C) | |||
---|---|---|---|
160 | 200 | 250 | |
IMC | Duplex Cu2(In,Sn) | Cu6(In,Sn)5 | Cu6(In,Sn)5 + Cu9(In,Sn)4 |
Soldering Temperature (°C) | |||
---|---|---|---|
200 | 220 | 250 | |
n | 0.498 | 0.440 | 0.447 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, P.; Tian, F.; Liu, Z.-Q. Identification and Evolution of Intermetallic Compounds Formed at the Interface between In-48Sn and Cu during Liquid Soldering Reactions. Metals 2024, 14, 139. https://doi.org/10.3390/met14020139
Shang P, Tian F, Liu Z-Q. Identification and Evolution of Intermetallic Compounds Formed at the Interface between In-48Sn and Cu during Liquid Soldering Reactions. Metals. 2024; 14(2):139. https://doi.org/10.3390/met14020139
Chicago/Turabian StyleShang, Panju, Feifei Tian, and Zhi-Quan Liu. 2024. "Identification and Evolution of Intermetallic Compounds Formed at the Interface between In-48Sn and Cu during Liquid Soldering Reactions" Metals 14, no. 2: 139. https://doi.org/10.3390/met14020139
APA StyleShang, P., Tian, F., & Liu, Z. -Q. (2024). Identification and Evolution of Intermetallic Compounds Formed at the Interface between In-48Sn and Cu during Liquid Soldering Reactions. Metals, 14(2), 139. https://doi.org/10.3390/met14020139