Fretting Fatigue Life Prediction for Aluminum Alloy Based on Particle-Swarm-Optimized Back Propagation Neural Network
Abstract
:1. Introduction
2. Fretting Fatigue Life Prediction Method
2.1. Critical Plane Approach for Fretting Fatigue Life Prediction
2.2. Stress and Strain Distribution Analysis
2.3. Finite Element (FE) Model for Fretting Fatigue
2.4. Calculation Method of Critical Plane
3. Artificial Neural Network Architecture
3.1. Multilayer Perceptron
3.2. Particle-Swarm-Optimized Back Propagation (PSO-BP) Neural Network
4. The Development of the Fretting Fatigue Life Prediction Neural Network (FFLP-NN)
4.1. Data Selection and Pre-Processing
4.2. Parameters Setting for PSO-BP Neural Network
4.3. The Training Process of the Fretting Fatigue Life Prediction Neural Network (FFLP-NN) Model
5. Results and Discussion
5.1. The Prediction Results on Training Set of the FFLP-NN Model
5.2. Comparative Analysis
5.2.1. Evaluate Parameters
- (1)
- Average accuracy rate
- (2)
- Floating range
5.2.2. Prediction Results of the Validation Set and Extra Experiment Data
6. Conclusions and Future Prospects
- (1)
- The FFLP-NN based on the PSO-BP algorithm shows its good performance in small sample problems. Even though the training set only contains 50 groups of non-duplicate data, the FFLP-NN can also provide reasonable prediction results. However, the FFLP-NN without post-processing usually gives conservative predictions. This shows that post-processing can improve the model’s prediction accuracy.
- (2)
- In the validation test, the prediction results given by the FFLP-NN and PP-FFLP-NN are closer to the experiment results compared with the SWT prediction results. The PP-FFLP-NN model performs the best among the three models.
- (3)
- In the extra experiment test, three-quarters of the PP-FFLP-NN results fall within the ±2 bandwidth, and all the results fall within the ±3 bandwidth. The FFLP-NN and SWT did not perform as well as the PP-FFLP-NN. The performance of the PP-FFLP-NN is much better than the FFLP-NN and SWT. This shows that the post-processing stage can not only prove the prediction accuracy in the training and validation set but can also improve the accuracy even when faced with completely unfamiliar input data.
- (4)
- For the generalization ability of each model, the FFLP-NN and PP-FFLP-NN have the same floating range. The SWT model cannot give as accurate prediction results as the FFLP-NN and PP-FFLP-NN for large-range FF life prediction.
- (1)
- The ANN technique is based on statistics methodology; the prediction accuracy will increase after adding more experiment data into training and updating the model in future investigations.
- (2)
- The post-processing technique shows the optimistic effect on the ANN model prediction accuracy, and the CP method has physical meanings. Trying to integrate the CP method as a post-processing rule into ANNs may enhance the reliability of the ANN model.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waterhouse, R.B. Fretting Fatigue. Int. Mater. Rev. 1992, 37, 77–98. [Google Scholar] [CrossRef]
- Araújo, J. The Effect of Rapidly Varying Contact Stress Fields on Fretting Fatigue. Int. J. Fatigue 2002, 24, 763–775. [Google Scholar] [CrossRef]
- Croccolo, D.; De Agostinis, M.; Fini, S.; Olmi, G.; Robusto, F.; Scapecchi, C. Fretting Fatigue in Mechanical Joints: A Literature Review. Lubricants 2022, 10, 53. [Google Scholar] [CrossRef]
- Beard, J. An Investigation into the Mechanisms of Fretting Fatigue. Ph.D. Thesis, University of Salford, Salford, UK, 1982. Available online: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.237768 (accessed on 18 February 2024).
- Waterhouse, R.B. Fretting Corrosion. Proc. Inst. Mech. Eng. 1955, 169, 1157–1172. [Google Scholar] [CrossRef]
- Ruiz, C.; Boddington, P.H.B.; Chen, K.C. An Investigation of Fatigue and Fretting in a Dovetail Joint. Exp. Mech. 1984, 24, 208–217. [Google Scholar] [CrossRef]
- Jin, O.; Mall, S. Effects of Slip on Fretting Behavior: Experiments and Analyses. Wear 2004, 256, 671–684. [Google Scholar] [CrossRef]
- Nix, K.J.; Lindley, T.C. The Influence of Relative Slip Range and Contact Material on the Fretting Fatigue Properties of 3.5NiCrMoV Rotor Steel. Wear 1988, 125, 147–162. [Google Scholar] [CrossRef]
- Madge, J.J.; Leen, S.B.; Shipway, P.H. The Critical Role of Fretting Wear in the Analysis of Fretting Fatigue. Wear 2007, 263, 542–551. [Google Scholar] [CrossRef]
- Findley, W.N. A Theory for the Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Load or Bending. J. Eng. Ind. 1959, 81, 301–305. [Google Scholar] [CrossRef]
- McDiarmid, D.L. A General Criterion for High Cycle Multiaxial Fatigue Failure. Fatigue Fract. Eng. Mater. Struct. 1991, 14, 429–453. [Google Scholar] [CrossRef]
- Matake, T. An Explanation on Fatigue Limit under Combined Stress. Bull. JSME 1977, 20, 257–263. [Google Scholar] [CrossRef]
- Fash, J.; Socie, D.; McDowell, D. Fatigue Life Estimates for a Simple Notched Component Under Biaxial Loading. In Multiaxial Fatigue; ASTM International: West Conshohocken, PA, USA, 1985; pp. 497–513. [Google Scholar] [CrossRef]
- Lohr, R.D.; Ellison, E.G. A Simple Theory for Low Cycle Multiaxial Fatigue. Fatigue Fract. Eng. Mater. Struct. 1980, 3, 1–17. [Google Scholar] [CrossRef]
- Kanazawa, K.; Miller, K.J.; Brown, M.W. Low-Cycle Fatigue Under Out-of-Phase Loading Conditions. J. Eng. Mater. Technol. 1977, 99, 222–228. [Google Scholar] [CrossRef]
- Fatemi, A.; Socie, D.F. A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-Of-Phase Loading. Fatigue Fract. Eng. Mater. Struct. 1988, 11, 149–165. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Sun, Q.; Li, C.; Qiao, Y. A New Multiaxial Fatigue Damage Model for Various Metallic Materials under the Combination of Tension and Torsion Loadings. Int. J. Fatigue 2009, 31, 776–781. [Google Scholar] [CrossRef]
- Smith, K.N.; Watson, P.; Topper, T.H. A stress-strain function for the fatigue of metals. J. Mater. JMLSA 1970, 5, 767–778. [Google Scholar]
- Szolwinski, M.P.; Farris, T.N. Observation, Analysis and Prediction of Fretting Fatigue in 2024-T351 Aluminum Alloy. Wear 1998, 221, 24–36. [Google Scholar] [CrossRef]
- Hwang, D.H.; Cho, S.-S. Fretting Fatigue Life Estimation Using Fatigue Damage Gradient Correction Factor in Various Contact Configurations. J. Mech. Sci. Technol. 2017, 31, 1127–1134. [Google Scholar] [CrossRef]
- Ding, J.; Houghton, D.; Williams, E.J.; Leen, S.B. Simple Parameters to Predict Effect of Surface Damage on Fretting Fatigue. Int. J. Fatigue 2011, 33, 332–342. [Google Scholar] [CrossRef]
- Navarro, C.; Munoz, S.; Dominguez, J. On the Use of Multiaxial Fatigue Criteria for Fretting Fatigue Life Assessment. Int. J. Fatigue 2008, 30, 32–44. [Google Scholar] [CrossRef]
- Ding, J.; Sum, W.S.; Sabesan, R.; Leen, S.B.; McColl, I.R.; Williams, E.J. Fretting Fatigue Predictions in a Complex Coupling. Int. J. Fatigue 2007, 29, 1229–1244. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, C. Analysis of Crack Initiation Location and Its Influencing Factors of Fretting Fatigue in Aluminum Alloy Components. Chin. J. Aeronaut. 2022, 35, 420–436. [Google Scholar] [CrossRef]
- Montesinos López, O.A.; Montesinos López, A.; Crossa, J. Fundamentals of Artificial Neural Networks and Deep Learning. In Multivariate Statistical Machine Learning Methods for Genomic Prediction; Springer International Publishing: Cham, Switzerland, 2022; pp. 379–425. [Google Scholar] [CrossRef]
- Kalayci, C.B.; Karagoz, S.; Karakas, Ö. Soft Computing Methods for Fatigue Life Estimation: A Review of the Current State and Future Trends. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 2763–2785. [Google Scholar] [CrossRef]
- Dourado, A.; Viana, F.A.C. Physics-Informed Neural Networks for Missing Physics Estimation in Cumulative Damage Models: A Case Study in Corrosion Fatigue. J. Comput. Inf. Sci. Eng. 2020, 20, 061007. [Google Scholar] [CrossRef]
- Yang, J.; Kang, G.; Liu, Y.; Kan, Q. A Novel Method of Multiaxial Fatigue Life Prediction Based on Deep Learning. Int. J. Fatigue 2021, 151, 106356. [Google Scholar] [CrossRef]
- Yang, J.; Kang, G.; Kan, Q. A Novel Deep Learning Approach of Multiaxial Fatigue Life-Prediction with a Self-Attention Mechanism Characterizing the Effects of Loading History and Varying Temperature. Int. J. Fatigue 2022, 162, 106851. [Google Scholar] [CrossRef]
- Nowell, D.; Nowell, P.W. A Machine Learning Approach to the Prediction of Fretting Fatigue Life. Tribol. Int. 2020, 141, 105913. [Google Scholar] [CrossRef]
- Brito Oliveira, G.A.; Freire Júnior, R.C.S.; Conte Mendes Veloso, L.A.; Araújo, J.A. A Hybrid ANN-Multiaxial Fatigue Nonlocal Model to Estimate Fretting Fatigue Life for Aeronautical Al Alloys. Int. J. Fatigue 2022, 162, 107011. [Google Scholar] [CrossRef]
- Brito Oliveira, G.A.; Cardoso, R.A.; Freire Júnior, R.C.S.; Araújo, J.A. A Generalized ANN-Multiaxial Fatigue Nonlocal Approach to Compute Fretting Fatigue Life for Aeronautical Al Alloys. Tribol. Int. 2023, 180, 108250. [Google Scholar] [CrossRef]
- Zhu, S.-P.; Ye, W.-L.; Correia, J.A.F.O.; Jesus, A.M.P.; Wang, Q. Stress Gradient Effect in Metal Fatigue: Review and Solutions. Theor. Appl. Fract. Mech. 2022, 121, 103513. [Google Scholar] [CrossRef]
- Li, X.; Zuo, Z.; Qin, W. A Fretting Related Damage Parameter for Fretting Fatigue Life Prediction. Int. J. Fatigue 2015, 73, 110–118. [Google Scholar] [CrossRef]
- Socie, D. Multiaxial Fatigue Damage Models. J. Eng. Mater. Technol. 1987, 109, 293–298. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Hills, D.A. Mechanics of Fretting Fatigue. Wear 1994, 175, 107–113. [Google Scholar] [CrossRef]
- Lykins, C. An Evaluation of Parameters for Predicting Fretting Fatigue Crack Initiation. Int. J. Fatigue 2000, 22, 703–716. [Google Scholar] [CrossRef]
- Mijwil, M.M. Artificial Neural Networks Advantages and Disadvantages. Mesopotamian J. Big Data 2021, 2021, 29–31. [Google Scholar] [CrossRef]
- Kruse, R.; Mostaghim, S.; Borgelt, C.; Braune, C.; Steinbrecher, M. Multi-Layer Perceptrons. In Texts in Computer Science; Springer: Cham, Switzerland, 2022; pp. 53–124. [Google Scholar] [CrossRef]
- Gad, A.G. Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Arch. Comput. Methods Eng. 2022, 29, 2531–2561. [Google Scholar] [CrossRef]
- Mulumba, D.M.; Liu, J.; Hao, J.; Zheng, Y.; Liu, H. Application of an Optimized PSO-BP Neural Network to the Assessment and Prediction of Underground Coal Mine Safety Risk Factors. Appl. Sci. 2023, 13, 5317. [Google Scholar] [CrossRef]
- Nowell, D. An Analysis of Fretting Fatigue; The University of Oxford: Oxford, UK, 1988; Available online: https://ora.ox.ac.uk/objects/uuid:61c9f75d-7c81-4280-9997-91f6e79543fb (accessed on 12 February 2024).
- Lukáš, P.; Klesnil, M.; Polák, J. High Cycle Fatigue Life of Metals. Mater. Sci. Eng. 1974, 15, 239–245. [Google Scholar] [CrossRef]
- Rousselet, G.; Pernet, C.R.; Wilcox, R.R. An Introduction to the Bootstrap: A Versatile Method to Make Inferences by Using Data-Driven Simulations. Meta-Psychology 2023, 7. [Google Scholar] [CrossRef]
- Dietterich, T.G. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Comput. 1998, 10, 1895–1923. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Muhammad Ali, P.J.; Faeq, A.K.; Abdullah, S.M. An Investigation on Disparity Responds of Machine Learning Algorithms to Data Normalization Method. Aro-Sci. J. Koya Univ. 2022, 10, 29–37. [Google Scholar] [CrossRef]
- Apicella, A.; Donnarumma, F.; Isgrò, F.; Prevete, R. A Survey on Modern Trainable Activation Functions. Neural Netw. 2021, 138, 14–32. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Ogundokun, R.O.; Maskeliunas, R.; Misra, S.; Damaševičius, R. Improved CNN Based on Batch Normalization and Adam Optimizer. In Proceedings of the Computational Science and Its Applications—ICCSA 2022 Workshops, Malaga, Spain, 4–7 July 2022; pp. 593–604. [Google Scholar] [CrossRef]
- Bates, S.; Hastie, T.; Tibshirani, R. Cross-Validation: What Does It Estimate and How Well Does It Do It? J. Am. Stat. Assoc. 2023, 1–12. [Google Scholar] [CrossRef]
- Van Schaeybroeck, B.; Vannitsem, S. Post-Processing through Linear Regression. Nonlinear Process. Geophys. 2011, 18, 147–160. [Google Scholar] [CrossRef]
- Li, W.; Pan, B.; Xia, J.; Duan, Q. Convolutional Neural Network-Based Statistical Post-Processing of Ensemble Precipitation Forecasts. J. Hydrol. 2022, 605, 127301. [Google Scholar] [CrossRef]
- Chen, K.; Guo, S.; Lin, Y.; Ying, Z. Least Absolute Relative Error Estimation. J. Am. Stat. Assoc. 2010, 105, 1104–1112. [Google Scholar] [CrossRef]
Material | E (MPa) | ν | σf′ | εf′ | b | c |
---|---|---|---|---|---|---|
2024-T351 | 74,100 | 0.33 | 714 | 0.166 | −0.078 | −0.536 |
Al4%Cu | 74,000 | 0.33 | 1015 | 0.21 | −0.11 | −0.52 |
Specimen No. | a (mm) | R (mm) | p0 (MPa) | σB (MPa) | Q/P | μ | Nf (Cycles) |
---|---|---|---|---|---|---|---|
1 | 0.57 | 75 | 157 | 92.7 | 0.45 | 0.75 | 670,000 |
2 | 0.19 | 25 | 157 | 92.7 | 0.45 | 0.75 | 10,000,000 * |
3 | 0.76 | 100 | 157 | 92.7 | 0.45 | 0.75 | 850,000 |
4 | 1.08 | 150 | 143 | 92.7 | 0.24 | 0.75 | 1,280,000 |
5 | 0.9 | 125 | 143 | 92.7 | 0.24 | 0.75 | 1,220,000 |
6 | 0.72 | 100 | 143 | 92.7 | 0.24 | 0.75 | 5,060,000 |
7 | 0.18 | 25 | 143 | 92.7 | 0.24 | 0.75 | 10,000,000 * |
8 | 1.08 | 150 | 143 | 92.7 | 0.45 | 0.75 | 690,000 |
9 | 0.18 | 25 | 143 | 92.7 | 0.45 | 0.75 | 10,000,000 * |
10 | 0.9 | 125 | 143 | 92.7 | 0.45 | 0.75 | 1,240,000 |
11 | 0.09 | 12.5 | 143 | 92.7 | 0.45 | 0.75 | 10,000,000 * |
12 | 0.54 | 75 | 143 | 92.7 | 0.45 | 0.75 | 800,000 |
13 | 0.72 | 100 | 143 | 92.7 | 0.45 | 0.75 | 610,000 |
14 | 0.09 | 12.5 | 143 | 92.7 | 0.24 | 0.75 | 10,000,000 * |
15 | 0.1 | 12.5 | 157 | 92.7 | 0.45 | 0.75 | 10,000,000 * |
16 | 0.28 | 37.5 | 157 | 92.7 | 0.45 | 0.75 | 10,000,000 * |
17 | 0.36 | 50 | 143 | 92.7 | 0.24 | 0.75 | 10,000,000 * |
18 | 1.14 | 150 | 157 | 92.7 | 0.45 | 0.75 | 670,000 |
19 | 0.36 | 50 | 143 | 77.2 | 0.45 | 0.75 | 10,000,000 * |
20 | 0.72 | 100 | 143 | 77.2 | 0.45 | 0.75 | 1,420,000 |
21 | 0.54 | 75 | 143 | 77.2 | 0.45 | 0.75 | 1,200,000 |
22 | 0.9 | 125 | 143 | 77.2 | 0.45 | 0.75 | 1,020,000 |
23 | 0.18 | 25 | 143 | 77.2 | 0.45 | 0.75 | 10,000,000 * |
24 | 0.09 | 12.5 | 143 | 77.2 | 0.45 | 0.75 | 10,000,000 * |
25 | 0.27 | 37.5 | 143 | 92.7 | 0.45 | 0.75 | 4,040,000 |
26 | 0.14 | 25 | 120 | 61.8 | 0.45 | 0.75 | 10,000,000 * |
27 | 0.54 | 75 | 143 | 92.7 | 0.24 | 0.75 | 10,000,000 * |
28 | 0.36 | 50 | 143 | 92.7 | 0.45 | 0.75 | 1,500,000 |
29 | 0.21 | 37.5 | 120 | 61.8 | 0.45 | 0.75 | 10,000,000 * |
30 | 0.28 | 50 | 120 | 61.8 | 0.45 | 0.75 | 10,000,000 * |
31 | 0.41 | 75 | 120 | 61.8 | 0.45 | 0.75 | 10,000,000 * |
32 | 0.71 | 125 | 120 | 61.8 | 0.45 | 0.75 | 1,570,000 |
33 | 0.57 | 100 | 120 | 61.8 | 0.45 | 0.75 | 10,000,000 * |
34 | 0.85 | 150 | 120 | 61.8 | 0.45 | 0.75 | 1,230,000 |
35 | 0.38 | 50 | 157 | 92.7 | 0.45 | 0.75 | 1,290,000 |
36 | 0.95 | 125 | 157 | 92.7 | 0.45 | 0.75 | 730,000 |
Specimen No. | a (mm) | R (mm) | p0 (MPa) | σB (MPa) | Q/P | μ | Nf (Cycles) |
---|---|---|---|---|---|---|---|
1 | 1.54 | 127 | 246.0 | 110.3 | 0.22 | 0.65 | 314,000 |
2 | 1.24 | 127 | 197.8 | 84.7 | 0.28 | 0.65 | 422,000 |
3 | 1.31 | 127 | 208.4 | 110.3 | 0.31 | 0.65 | 241,475 |
4 | 1.21 | 121 | 202.7 | 100.7 | 0.35 | 0.65 | 241,016 |
5 | 1.37 | 121 | 230.6 | 110.3 | 0.31 | 0.65 | 217,061 |
6 | 1.76 | 229 | 155.7 | 111.7 | 0.43 | 0.65 | 238,000 |
7 | 1.75 | 229 | 155.3 | 112.9 | 0.37 | 0.65 | 269,574 |
8 | 1.40 | 127 | 223.2 | 84.8 | 0.23 | 0.65 | 668,277 |
9 | 1.66 | 178 | 189.2 | 100.0 | 0.27 | 0.65 | 349,520 |
10 | 1.66 | 178 | 189.2 | 100.0 | 0.27 | 0.65 | 433,780 |
11 | 1.30 | 127 | 207.3 | 88.4 | 0.35 | 0.65 | 563,946 |
12 | 1.51 | 127 | 240.4 | 101.9 | 0.31 | 0.65 | 545,489 |
13 | 1.51 | 127 | 240.4 | 101.9 | 0.31 | 0.65 | 337,934 |
14 | 1.53 | 178 | 174.2 | 85.8 | 0.38 | 0.65 | 582,922 |
15 | 1.88 | 229 | 166.3 | 97.0 | 0.32 | 0.65 | 739,250 |
16 | 1.75 | 178 | 199.9 | 113.1 | 0.34 | 0.65 | 455,759 |
17 | 1.88 | 229 | 166.9 | 85.4 | 0.32 | 0.65 | 856,524 |
18 | 1.28 | 127 | 204.0 | 115.8 | 0.52 | 0.65 | 465,000 |
19 | 1.77 | 178 | 201.2 | 85.2 | 0.21 | 0.65 | 665,073 |
20 | 1.77 | 178 | 201.2 | 85.2 | 0.21 | 0.65 | 749,093 |
21 | 2.00 | 229 | 177.3 | 81.8 | 0.24 | 0.65 | 747,135 |
22 | 2.00 | 229 | 177.3 | 81.8 | 0.25 | 0.65 | 729,715 |
23 | 1.40 | 127 | 223.0 | 109.2 | 0.35 | 0.65 | 302,804 |
24 | 1.73 | 229 | 153.4 | 81.0 | 0.31 | 0.65 | 867,330 |
25 | 1.74 | 229 | 153.8 | 82.9 | 0.26 | 0.65 | 768,364 |
26 | 1.79 | 178 | 203.6 | 99.4 | 0.31 | 0.65 | 552,250 |
27 | 1.99 | 229 | 176.4 | 109.5 | 0.34 | 0.65 | 320,864 |
28 | 1.49 | 127 | 237.8 | 108.8 | 0.27 | 0.65 | 253,883 |
29 | 1.87 | 229 | 165.8 | 110.8 | 0.33 | 0.65 | 479,540 |
30 | 1.40 | 127 | 224.0 | 98.2 | 0.36 | 0.65 | 464,166 |
31 | 2.01 | 229 | 178.3 | 97.9 | 0.24 | 0.65 | 463,324 |
32 | 1.65 | 178 | 187.9 | 84.7 | 0.27 | 0.65 | 621,442 |
33 | 1.53 | 178 | 174.3 | 97.4 | 0.36 | 0.65 | 459,882 |
34 | 1.69 | 178 | 192.1 | 106.4 | 0.34 | 0.65 | 225,535 |
35 | 1.53 | 178 | 174.9 | 110.6 | 0.38 | 0.65 | 330,695 |
36 | 1.31 | 127 | 209.0 | 97.1 | 0.33 | 0.65 | 311,516 |
37 | 1.50 | 127 | 238.6 | 85.4 | 0.27 | 0.65 | 381,535 |
Layer | Initializer | Unit | Activation Function | Regularization | Dropout Ratio |
---|---|---|---|---|---|
Input | He-normal | 4 | ReLU | L2(0.2) | 50% |
Hidden | None | 8 | Leaky_ReLU | L2(0.2) | 50% |
Output | None | 1 | None | None | 0% |
Specimen No. | a (mm) | R (mm) | p0 (MPa) | σB (MPa) | Q/P | μ | Nf (Cycles) |
---|---|---|---|---|---|---|---|
1 | 0.25 | 50 | 100 | 93.8 | 0.40 | 0.65 | 766,000 |
2 | 0.51 | 50 | 200 | 93.8 | 0.74 | 0.65 | 925,600 |
3 | 0.51 | 50 | 200 | 78.1 | 0.83 | 0.65 | 1,010,600 |
4 | 0.25 | 50 | 100 | 78.1 | 0.18 | 0.65 | 623,200 |
Prediction Data | SWT | FFLP-NN | PP-FFLP-NN |
---|---|---|---|
Validation set | 60.82% | 60.74% | 116.99% |
Extra experiment | 49.24% | 66.98% | 129.03% |
Total average | 56.19% | 63.24% | 121.81% |
Model | SWT | FFLP-NN | PP-FFLP-NN |
---|---|---|---|
Floating range | 20.59% | 9.88% | 9.88% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Yang, H.; Yang, J. Fretting Fatigue Life Prediction for Aluminum Alloy Based on Particle-Swarm-Optimized Back Propagation Neural Network. Metals 2024, 14, 381. https://doi.org/10.3390/met14040381
Li X, Yang H, Yang J. Fretting Fatigue Life Prediction for Aluminum Alloy Based on Particle-Swarm-Optimized Back Propagation Neural Network. Metals. 2024; 14(4):381. https://doi.org/10.3390/met14040381
Chicago/Turabian StyleLi, Xin, Haoran Yang, and Jianwei Yang. 2024. "Fretting Fatigue Life Prediction for Aluminum Alloy Based on Particle-Swarm-Optimized Back Propagation Neural Network" Metals 14, no. 4: 381. https://doi.org/10.3390/met14040381
APA StyleLi, X., Yang, H., & Yang, J. (2024). Fretting Fatigue Life Prediction for Aluminum Alloy Based on Particle-Swarm-Optimized Back Propagation Neural Network. Metals, 14(4), 381. https://doi.org/10.3390/met14040381