Effects of Annealing Temperature on Microstructural Evolution and Mechanical Properties in Cold-Rolled High-Nitrogen Austenitic Steel
Abstract
:1. Introduction
2. Experimental Procedure
3. Experimental Results
3.1. Microstructures
3.2. Mechanical Properties
3.3. Fractography
4. Discussion
4.1. Effects of Cr2N Shape on Fracture Surface Morphology
4.2. Recrystallization Effects on Mechanical Properties
5. Conclusions
- (1)
- In the annealing temperature range of 600 to 800 °C, the precipitates of Cr2N particles along grain boundaries were observed, with the shape of the particles being either continuous or spherical. Furthermore, a continuous cellular shape of Cr2N precipitation was observed in the specimen annealed at 700 °C and in the specimen cold-rolled with a reduction rate of 25%. Notably, the morphology of the precipitates was found to be associated with the type of intergranular fracture, with spherical Cr2N particles exhibiting dimpled fracture surfaces and continuous Cr2N particles exhibiting ledge features.
- (2)
- After exposure to a cold-rolling reduction rate of 25%, the microstructure, hardness, 0.2% YS and UTS of the specimens remained relatively constant up to the annealing temperature of 500 °C, whereas recrystallized grains were observed when annealed at temperatures exceeding 800 °C.
- (3)
- The strength ratio maintained a constant value of approximately 0.85 until an annealing temperature of 700 °C, indicating that the strength ratio was unaffected by matrix recovery. However, a sharp decline in the strength ratio was observed in the specimen annealed over 800 °C, implying that the strength ratio was affected by recrystallization.
- (4)
- A linear relationship between UTS and hardness was observed in HNS, and an empirical relationship was proposed to predict UTS from hardness values.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ha, H.; Kwon, H. Effects of Cr2N on the pitting corrosion of high nitrogen stainless steels. Electrochim. Acta 2007, 52, 2175–2180. [Google Scholar] [CrossRef]
- Byrnes, M.L.G.; Grujicic, M.; Owen, W.S. Nitrogen strengthening of a stable austenitic stainless steel. Acta Metall. 1987, 35, 1853–1862. [Google Scholar] [CrossRef]
- Werner, E. Solid solution and grain size hardening of nitrogen-alloyed austenitic steels. Mater. Sci. Eng. A 1988, 101, 93–98. [Google Scholar]
- Simmons, J.W. Overview: High-nitrogen alloying of stainless steels. Mater. Sci. Eng. A 1996, 207, 159–169. [Google Scholar] [CrossRef]
- Saller, G.; Spiradek-Hahn, K.; Scheu, C.; Clemens, H. Microstructural evolution of Cr–Mn–N austenitic steels during cold work hardening. Mater. Sci. Eng. A 2006, 427, 246–254. [Google Scholar] [CrossRef]
- Müller, P.C.; Solenthaler, C.; Uggowitzer, P.; Speidel, M.O. On the effect of nitrogen on the dislocation structure of austenitic stainless steel. Mater. Sci. Eng. A 1993, 164, 164–169. [Google Scholar] [CrossRef]
- Llewellyn, D.T. Work hardening effects in austenitic stainless steel. Mater. Sci. Technol. 1997, 13, 389–400. [Google Scholar] [CrossRef]
- Ustinovshikov, Y.; Ruts, A.; Bannykh, O.; Blinov, V.; Kostina, M. Microstructure and properties of the high-nitrogen Fe-Cr austenite. Mater. Sci. Eng. A 1999, 262, 82–87. [Google Scholar] [CrossRef]
- Shin, J.; Lee, J. Effects of twin intersection on the tensile behavior in high nitrogen austenitic stainless steels. Mater. Charact. 2014, 91, 19–25. [Google Scholar] [CrossRef]
- Simmons, J.W. Strain hardening and plastic flow properties of nitrogen-alloyed Fe-17Cr-(8–10)Mn-5Ni austenitic stainless steel. Acta Mater. 1997, 45, 2467–2475. [Google Scholar] [CrossRef]
- Lee, T.; Kim, S.; Jung, Y. Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-(N) superaustenitic stainless steels aged at 900 C. Met. Mater. Trans. A 2000, 31, 1713–1723. [Google Scholar] [CrossRef]
- Weiss, B.; Stickler, R. Phase instabilities during high temperature exposure of 316 austenitic stainless steel. Metall. Trans. 1972, 3, 851–866. [Google Scholar] [CrossRef]
- Spruiell, J.E.; Scott, J.A.; Ary, C.S.; Hardin, R.L. Microstructural stability of thermal-mechanically pretreated type 316 austenitic stainless steel. Metall. Trans. 1973, 4, 1533–1544. [Google Scholar] [CrossRef]
- Simmons, J.W.; Atteringe, D.G.; Rawers, J.C. Sensitization of high-nitrogen austenitic stainless steels by dichroium nitride precipitation. Corros. Sci. 1994, 50, 491–501. [Google Scholar] [CrossRef]
- Simmons, J.W. Influence of nitride (Cr2N) precipitation on the plastic flow behavior of high-nitrogen austenitic stainless steel. Scr. Met. Mater. 1995, 32, 265–270. [Google Scholar] [CrossRef]
- Li, H.; Jiang, Z.; Feng, H.; Ma, Q.; Zhan, D. Aging precipitation behavior of 18Cr-16Mn-2Mo-1.1N high nitrogen austenitic stainless steel and its influences on mechanical properties. J. Iron Steel Res. Int. 2012, 19, 43–51. [Google Scholar] [CrossRef]
- Lee, T.; Kim, S.; Takaki, S. Time-temperature-precipitation characteristics of high-nitrogen austenitic Fe-18Cr-18Mn-2Mo-0.9N steel. Metal. Mater. Trans. A 2006, 37, 3445–3454. [Google Scholar] [CrossRef]
- Shi, F.; Wang, L.; Cui, W.; Liu, C. Precipitation kinetics of Cr2N in high nitrogen austenitic stainless steel. J. Iron Steel Res. Int. 2008, 15, 72–77. [Google Scholar] [CrossRef]
- Hong, C.M.; Shi, J.; Sheng, L.Y.; Cao, W.C.; Hui, W.J.; Dong, H. Effects of hot-working parameters on microstructural evolution of high nitrogen austenitic stainless steel. Mater. Des. 2011, 32, 3711–3717. [Google Scholar] [CrossRef]
- Hong, C.M.; Shi, J.; Sheng, L.; Cao, W.; Hui, W.; Dong, H. Influence of hot working on microstructure and mechanical behavior of high nitrogen stainless steel. J. Mater. Sci. 2011, 46, 5097–5103. [Google Scholar] [CrossRef]
- Frehn, A.; Ratte, E.; Bleck, W. Influence of temperature and strain rate on the mechanical properties and the formability of the austenitic stainless steel 1.4376 containing manganese and nitrogen. In High Nitrogen Steels; GRIPS media GmbH: Ostend, Belgium, 2004; pp. 447–460. [Google Scholar]
- Liao, L.; Zhao, Z.; Xu, F.; Zhang, W.; Li, J. Influence of N on precipitation behavior and transformation kinetics of super austenitic stainless steels after isothermal ageing at 900 °C. J. Mater. Res. Technol. 2022, 19, 3670–3684. [Google Scholar] [CrossRef]
- Lee, T.; Oh, C.; Han, H.; Lee, C.; Kim, S.; Takaki, S. On the crystal structure of Cr2N precipitates in high-nitrogen austenitic stainless steel. Acta Cryst. B 2005, 61, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Kim, S.; Takaki, S. On the crystal structure of Cr2N precipitates in high-nitrogen austenitic stainless steel. II. Order-disorder transition of Cr2N during electron irradiation. Acta Cryst. B 2006, 62, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Sh, J.B. Failure mode transition of Nb phase from cleavage to dimple/tear in Nb-16Si-based alloys prepared via spark plasma sintering. Mater. Des. 2016, 111, 301–311. [Google Scholar] [CrossRef]
- Gholami, M.; Vesely, J.; Altenberger, I.; Kuhn, H.A.; Janecek, M.; Wollmann, M.; Wagner, I. Effects of microstructure on mechanical properties of CuNiSi alloys. J. Alloys Compd. 2017, 696, 201–212. [Google Scholar] [CrossRef]
- Koyama, M.; Springer, H.; Merzlikin, S.V.; Tsuzaki, K.; Akiyama, E.; Raabe, D. Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe-Mn-Al-C light weight austenitic steel. Int. J. Hydrogen Energy 2014, 39, 4634–4646. [Google Scholar] [CrossRef]
- Neeraj, T.; Srinivasan, R.; Li, J. Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding. Acta Mater. 2012, 60, 5160–5171. [Google Scholar] [CrossRef]
- Goswami, R.; Bernstein, N. Effect of interfaces of grain boundary Al2CuLi plates on fracture behavior of Al-3Cu-2Li. Acta Mater. 2015, 87, 399–410. [Google Scholar] [CrossRef]
- Zheng, K.; Dong, J.; Zeng, X.; Ding, W. Precipitation and its effect on the mechanical properties of a cast Mg-Gd-Nd-Zr alloy. Mater. Sci. Eng. A 2008, 489, 44–54. [Google Scholar] [CrossRef]
- Li, H.; Jiang, Z.; Feng, H.; Zhang, S.; Ki, L.; Han, P.; Misra, R.D.K.; Li, J. Microstructure, mechanical and corrosion properties of friction stir welded high nitrogen nickel-free austenitic stainless steel. Mater. Des. 2015, 84, 291–299. [Google Scholar] [CrossRef]
- Samantray, D.; Mandal, S.; Kumar, V.; Alber, S.K.; Bhaduri, A.K.; Jayakumar, T. Optimization of processing parameters based on high temperature flow behavior and microstructural evolution of a nitrogen enhanced 316L(N) stainless steel. Mater. Sci. Eng. A 2012, 552, 236–244. [Google Scholar] [CrossRef]
- Shin, J.; Jeong, J.; Lee, J.; Kim, S.; Jang, J.; Moon, J.; Ha, H.; Lee, T. Nitrogen-induced yield point phenomenon in an austenitic steel. Mater. Sci. Eng. A 2020, 774, 138897. [Google Scholar] [CrossRef]
- Park, M.; Kang, M.; Park, G.; Choi, E.; Kim, H.; Moon, H.; Jeon, J.; Kim, H.; Kwon, S.; Kim, B. The effects of recrystallization on strength and impact toughness of cold-worked high-Mn austenitic steels. Metals 2019, 9, 948. [Google Scholar] [CrossRef]
- Yan, S.; Li, T.; Liang, T.; Chen, J.; Zhao, Y.; Liu, X. By controlling recrystallization degree: A plain medium Mn steel overcoming Lüders deformation and low yield-to-tensile ratio simultaneously. Mater. Sci. Eng. A 2019, 758, 79–85. [Google Scholar] [CrossRef]
Composition | C | Si | Mn | Cr | V | N |
---|---|---|---|---|---|---|
wt. % | 0.04~0.06 | 0.25~0.5 | 17.5~19.5 | 17.5~19.0 | 0.03~0.1 | 0.51 |
Equation | MS (°C) | |
---|---|---|
Pickering | 502−810[%C]−1230[%N]−13[%Mn]−30[%Ni]−12[%Cr]−54[%Cu]−46[%Mo] | −624.4 |
Monkman | 1182−1456[%C + %N]−37[%Cr] −57[%Ni] | −293.0 |
Eichelmann | 1350−1665[%C + %N]−28[%Si]−33[%Mn]−42[%Cr]−61[%Ni] | −960.0 |
Kulmburg | 492−125[%C]−65.5[%Mn]−10[%Cr]−29[%Ni] | −935.9 |
Equation | Md30 (°C) | |
---|---|---|
Angel | 413−462[%C + %N]−9.2[%Si]−8.1[%Mn]−13.7[%Cr]−9.5[%Ni]−18.5[%Mo] | −244.6 |
Gladman | 497−462[%C + %N]−9.2[%Si]−8.1[%Mn]−13.7[%Cr]−20[%Ni]−18.5[%Mo] | −162.6 |
Nohara | 551−462[%C + %N]−9.2[%Si]−8.1[%Mn]−13.7[%Cr]−29[%Ni + %Cu] −18.5[%Mo]−68[%N] | −145.3 |
Sjöberg | 608−515[%C]−821[%N]−7.8[%Si]−12[%Mn]−13[%Cr]−34[%Ni]−6.5[Mo] | −299.2 |
0.2% YS (MPa) | UTS (MPa) | El (%) | RA (%) | |
---|---|---|---|---|
As-quenched specimen | 475 | 783 | 69.3 | 74.4 |
As-cold-rolled specimen | 889 | 1070 | 31.28 | 56.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.-H.; Song, J.-Y.; Ma, Y.-W. Effects of Annealing Temperature on Microstructural Evolution and Mechanical Properties in Cold-Rolled High-Nitrogen Austenitic Steel. Metals 2024, 14, 389. https://doi.org/10.3390/met14040389
Shin J-H, Song J-Y, Ma Y-W. Effects of Annealing Temperature on Microstructural Evolution and Mechanical Properties in Cold-Rolled High-Nitrogen Austenitic Steel. Metals. 2024; 14(4):389. https://doi.org/10.3390/met14040389
Chicago/Turabian StyleShin, Jong-Ho, Jeon-Young Song, and Young-Wha Ma. 2024. "Effects of Annealing Temperature on Microstructural Evolution and Mechanical Properties in Cold-Rolled High-Nitrogen Austenitic Steel" Metals 14, no. 4: 389. https://doi.org/10.3390/met14040389
APA StyleShin, J. -H., Song, J. -Y., & Ma, Y. -W. (2024). Effects of Annealing Temperature on Microstructural Evolution and Mechanical Properties in Cold-Rolled High-Nitrogen Austenitic Steel. Metals, 14(4), 389. https://doi.org/10.3390/met14040389