Behavior of Two Dental Alloys as Ingot and Cast Crown in Artificial Saliva
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection and Samples Preparation
2.2. Microstructure
2.3. Electrochemical Tests
2.4. Microhardness
2.5. Tensile Test and 3-Point Bending Test
2.6. Statistical Analysis
3. Results
3.1. Microstructure Analysis
3.2. Corrosion Potential
3.3. Electrochemical Impedance Spectroscopy (EIS)
3.4. Microhardness
3.5. Bending Test and Tensile Test
- E = Young’s modulus
- F = force applied to the specimen
- L = span between the supports
- d = diameter or width of the specimen
- y = deflection of the specimen at the center
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marin, E. History of dental biomaterials: Biocompatibility, durability and still open challenges. Herit. Sci. 2023, 11, 207. [Google Scholar] [CrossRef]
- Cempel, M.; Nikel, G. Nickel: A review of its sources and environmental toxicology. Pol. J. Environ. Stud. 2006, 15, 375–382. [Google Scholar]
- Baker, M. European Standards Developed in Support of the European Union Nickel Directive. In Metal Allergy: From Dermatitis to Implant and Device Failure; Chen, J.K., Thyssen, J.P., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 23–29. ISBN 978-3-319-58503-1. [Google Scholar]
- Schäfer, T.; Böhler, E.; Ruhdorfer, S.; Weigl, L.; Wessner, D.; Filipiak, B.; Wichmann, H.E.; Ring, J. Epidemiology of contact allergy in adults. Allergy Eur. J. Allergy Clin. Immunol. 2001, 56, 1192–1196. [Google Scholar] [CrossRef] [PubMed]
- Denkhaus, E.; Salnikow, K. Nickel essentiality, toxicity, and carcinogenicity. Crit. Rev. Oncol. Hematol. 2002, 42, 35–56. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Falcon, C.M.; Gil-Lopez, T.; Verdu-Vazquez, A.; Mirza-Rosca, J.C. Corrosion behavior in Ringer solution of several commercially used metal alloys. Anti-Corros. Methods Mater. 2021, 68, 324–330. [Google Scholar] [CrossRef]
- Yun, C.-S.; Hanawa, T.; Hong, M.-H.; Min, B.K.; Kwon, T.-Y. Biocompatibility of Ni–Cr alloys, with the same composition, prepared by two new digital manufacturing techniques. Mater. Lett. 2021, 305, 130761. [Google Scholar] [CrossRef]
- Waasdorp, M.; Krom, B.P.; Bikker, F.J.; van Zuijlen, P.P.M.; Niessen, F.B.; Gibbs, S. The bigger picture: Why oral mucosa heals better than skin. Biomolecules 2021, 11, 1165. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Falcon, C.M.; Gil-Lopez, T.; Verdu-Vazquez, A.; Mirza-Rosca, J.C. Electrochemical characterization of some cobalt base alloys in Ringer solution. Mater. Chem. Phys. 2021, 260, 124164. [Google Scholar] [CrossRef]
- Ashtiani, A.H.; Mardasi, N.; Fathi, A. Effect of multiple firings on the shear bond strength of presintered cobalt-chromium alloy and veneering ceramic. J. Prosthet. Dent. 2021, 126, 803.e1–803.e6. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, X.; Li, N.; Yan, J. Effects of post-treatment on metal-ceramic bond properties of selective laser melted Co-Cr dental alloy. Part 1: Annealing temperature. J. Prosthet. Dent. 2023, 129, 657.e1–657.e9. [Google Scholar] [CrossRef]
- Aldhohrah, T.; Yang, J.; Guo, J.; Zhang, H.; Wang, Y. Ion release and biocompatibility of Co-Cr alloy fabricated by selective laser melting from recycled Co-Cr powder: An in vitro study. J. Prosthet. Dent. 2023, 130, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Dong, X.; Qu, Y.; Yan, J.; Li, N. Analysis of microstructure and fatigue of cast versus selective laser-melted dental Co-Cr alloy. J. Prosthet. Dent. 2022, 128, 218.e1–218.e7. [Google Scholar] [CrossRef] [PubMed]
- Şahin, M.; Ünalan, F.; Mutlu, İ. Corrosion, ion release, and surface hardness of Ti-6Al-4V and cobalt-chromium alloys produced by CAD-CAM milling and laser sintering. J. Prosthet. Dent. 2022, 128, 529.e1–529.e10. [Google Scholar] [CrossRef] [PubMed]
- Altuntas, M.C.; Guleryuz, A. Evaluation of the relationship between metallurgical properties and metal-ceramic bond characteristics of Co-Cr alloys manufactured by different techniques. Metals, 2023; 130, 937.e1–937.e10. [Google Scholar] [CrossRef]
- Chang, H.-S.; Peng, Y.-T.; Hung, W.-L.; Hsu, M.-L. Evaluation of marginal adaptation of Co Cr Mo metal crowns fabricated by traditional method and computer-aided technologies. J. Dent. Sci. 2019, 14, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Hu, Q.; Liu, Y.; Wang, Y.; Cheng, H. Comparative analysis of the surface properties and corrosion resistance of Co-Cr dental alloys fabricated by different methods. J. Prosthet. Dent. 2022, 127, 497.e1–497.e11. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Falcon, C.M.; Gil-Lopez, T.; Verdu-Vazquez, A.; Mirza-Rosca, J.C. Analysis and Comparison of the Corrosive Behavior of Nickel-Based and Cobalt-Based Dental Alloys. Materials 2021, 14, 4949. [Google Scholar] [CrossRef] [PubMed]
- ASTM E3-11(2017); Standard Guide for Preparation of Metallographic Specimens. ASTM International: West Conshohocken, PA, USA, 2017.
- ISO/TS 21383:2021; Microbeam Analysis—Scanning Electron Microscopy—Qualification of The scanning Electron Microscope for Quantitative Measurements. ISO: Geneva, Switzerland, 2021.
- ISO 10271:2020; Dentistry—Corrosion Test Methods for Metallic Materials. ISO: Geneva, Switzerland, 2020.
- ISO 16773-1-4:2016; Electrochemical Impedance Spectroscopy (EIS) on Coated and Uncoated Metallic Specimens. ISO: Geneva, Switzerland, 2016.
- ISO 14577-1:2015; Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 1: Test Method. ISO: Geneva, Switzerland, 2015.
- ISO 22674:2022; Dentistry—Metallic Materials for Fixed and Removable Restorations and Appliances. ISO: Geneva, Switzerland, 2022.
- ISO 7438:2020; Metallic Materials—Bend Test. International Organization for Standardization: Geneva, Switzerland, 2020.
- ASTM E 1508-12a (2019); Standard Guide for Quantitative Analysis by Energy-Dispersive Spectroscopy. American Society for Testing and Materials: West Conshohocken, PA, USA, 2019.
- Fratila, A.; Jimenez-Marcos, C.; Mirza-Rosca, J.C.; Saceleanu, A. Mechanical properties and biocompatibility of various cobalt chromium dental alloys. Mater. Chem. Phys. 2023, 304, 127867. [Google Scholar] [CrossRef]
- Mercieca, S.; Caligari Conti, M.; Buhagiar, J.; Camilleri, J. Assessment of corrosion resistance of cast cobalt- and nickel-chromium dental alloys in acidic environments. J. Appl. Biomater. Funct. Mater. 2018, 16, 47–54. [Google Scholar] [CrossRef]
- Jiménez-Marcos, C.; Mirza-Rosca, J.C.; Fratila, A.; Saceleanu, A. Influence and Comparison of the Properties of Three Cobalt-Chromium Dental Alloys. Microsc. Microanal. 2023, 29, 156–160. [Google Scholar] [CrossRef]
- Socorro-Perdomo, P.P.; Florido-Suárez, N.R.; Voiculescu, I.; Mirza-Rosca, J.C. Comparative eis study of alxcocrfeni alloys in ringer’s solution for medical instruments. Metals 2021, 11, 928. [Google Scholar] [CrossRef]
- BOUKAMP, B. A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 1986, 20, 31–44. [Google Scholar] [CrossRef]
- Øilo, M.; Nesse, H.; Lundberg, O.J.; Gjerdet, N.R. Mechanical properties of cobalt-chromium 3-unit fixed dental prostheses fabricated by casting, milling, and additive manufacturing. J. Prosthet. Dent. 2018, 120, 156.e1–156.e7. [Google Scholar] [CrossRef] [PubMed]
- Cha, M.S.; Lee, S.W.; Huh, Y.H.; Cho, L.R.; Park, C.J. Correlation between microhardness and wear resistance of dental alloys against monolithic zirconia. J. Adv. Prosthodont. 2021, 13, 127–135. [Google Scholar] [CrossRef]
- Ekren, O.; Kocak, E.F.; Ucar, Y. Effect of internal design changes on the mechanical properties of laser-sintered cobalt-chromium specimens. J. Prosthet. Dent. 2023, 129, 508–512. [Google Scholar] [CrossRef]
- Chun, K.J.; Lee, J.Y. Comparative study of mechanical properties of dental restorative materials and dental hard tissues in compressive loads. J. Dent. Biomech. 2014, 5, 1758736014555246. [Google Scholar] [CrossRef]
Sample | Ni | Co | Cr | W | Si | Al | Mo | Fe |
---|---|---|---|---|---|---|---|---|
Ni-Cr | 61.4 | - | 25.7 | - | 1.5 | <1.0 | 11 | - |
Co-Cr | - | 59.5 | 31.5 | 3.0 | 2.0 | - | 5 | <1.0 |
Elements | Ni-Cr | Co-Cr | ||
---|---|---|---|---|
wt.% | at.% | wt.% | at.% | |
AlK | 2.72 | 5.67 | - | - |
SiK | 3.50 | 7.00 | - | - |
MoL | 1.06 | 0.62 | - | - |
CrK | 21.11 | 22.83 | 30.44 | 34.53 |
NiK | 64.36 | 61.66 | - | - |
W L | 7.25 | 2.22 | 3.40 | 1.09 |
NbL | - | - | 2.48 | 1.57 |
MnK | - | - | 1.33 | 1.43 |
CoK | - | - | 60.89 | 60.95 |
HgL | - | - | 1.47 | 0.43 |
Alloy | Ecorr, V vs. SCE | icorr | Rp | Βa | Βc | ipass | Ebd | ||
---|---|---|---|---|---|---|---|---|---|
Initial | After 3 h | After 24 h | µA/cm2 | KΩ/cm2 | mV/DIV | mV/DIV | µA/cm2 | mV | |
Ni-Cr | −0.359 | −0.452 | −0.390 | 0.20 | 112 | 157 | 88 | 3.82 | 620 |
Co-Cr | −0.139 | −0.121 | −0.094 | 0.24 | 98 | 164 | 84 | 4.14 | 600 |
Potential (V) | Alloys | Max. Impedance (Ω) | Max. Phase Angle (°) |
---|---|---|---|
−0.400 | Ni-Cr | 7.24 × 103 | 53 |
Co-Cr | 5.76 × 104 | 66 | |
−0.200 | Ni-Cr | 1.18 × 104 | 55 |
Co-Cr | 5.41 × 104 | 66 | |
0.000 | Ni-Cr | 2.36 × 104 | 60 |
Co-Cr | 6.82 × 104 | 68 | |
0.200 | Ni-Cr | 3.48 × 104 | 63 |
Co-Cr | 7.78 × 104 | 69 | |
0.400 | Ni-Cr | 3.38 × 104 | 62 |
Co-Cr | 6.03 × 104 | 67 |
Potential (V) | Samples | Parameters | |||
---|---|---|---|---|---|
Rsol (Ω·cm2) | Y01 (S·secn/cm2) | n1 | R1 (Ω·cm2) | ||
−0.400 | Ni-Cr | 17.33 | 1.30 × 10−4 | 0.66 | 4.97·103 |
Co-Cr | 21.00 | 2.78 × 10−5 | 0.75 | 6.75·104 | |
−0.200 | Ni-Cr | 17.31 | 1.22 × 10−4 | 0.66 | 4.97·104 |
Co-Cr | 21.00 | 2.88 × 10−5 | 0.75 | 5.83·104 | |
0.000 | Ni-Cr | 17.33 | 1.05 × 10−4 | 0.68 | 7.55·104 |
Co-Cr | 20.91 | 2.47 × 10−5 | 0.76 | 8.92·104 | |
0.200 | Ni-Cr | 17.50 | 7.62 × 10−5 | 0.71 | 2.75·105 |
Co-Cr | 20.90 | 2.15 × 10−5 | 0.77 | 1.02·105 | |
0.400 | Ni-Cr | 17.51 | 7.18 × 10−5 | 0.71 | 7.46·104 |
Co-Cr | 20.97 | 2.68 × 10−5 | 0.76 | 6.48·104 |
Mean Parameter ± Standard Deviation | Ni-Cr | Co-Cr | ||
---|---|---|---|---|
IN | CC | IN | CC | |
Vickers microhardness | 231.6 ± 11.2 | 182.2 ± 11.5 | 425.4 ± 16.2 | 326.6 ± 14.2 |
Young´s modulus (GPa) | 201.5 ± 16.2 | 128.9 ± 22.9 | 282.2 ± 15.8 | 110.7 ± 12.9 |
Tensile strength (MPa) | 720.3 ± 26.5 | 386.6 ± 12.4 | 1310.2 ± 28.8 | 623.3 ± 12.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porumb, A.; Brito-Garcia, S.; Mirza-Rosca, J.C.; Fratila, A. Behavior of Two Dental Alloys as Ingot and Cast Crown in Artificial Saliva. Metals 2024, 14, 398. https://doi.org/10.3390/met14040398
Porumb A, Brito-Garcia S, Mirza-Rosca JC, Fratila A. Behavior of Two Dental Alloys as Ingot and Cast Crown in Artificial Saliva. Metals. 2024; 14(4):398. https://doi.org/10.3390/met14040398
Chicago/Turabian StylePorumb, Anca, Santiago Brito-Garcia, Julia Claudia Mirza-Rosca, and Anca Fratila. 2024. "Behavior of Two Dental Alloys as Ingot and Cast Crown in Artificial Saliva" Metals 14, no. 4: 398. https://doi.org/10.3390/met14040398
APA StylePorumb, A., Brito-Garcia, S., Mirza-Rosca, J. C., & Fratila, A. (2024). Behavior of Two Dental Alloys as Ingot and Cast Crown in Artificial Saliva. Metals, 14(4), 398. https://doi.org/10.3390/met14040398