Predictive Modelling and Optimization of the Mechanical Properties of Laser-Coated NB/SiC/Ni Welds Using an ANFIS
Abstract
:1. Introduction
2. Experimental Design and Analysis
2.1. Materials and Preparations
2.2. Experimental Design and Layout
2.3. Adaptive Network Based Fuzzy Inference System
3. Experimental Results and Discussion
3.1. Experimental Design Based on Orthogonal Array
3.2. Microstructure of the Weld Zone for Laser-Coated NB/SiC/Ni Welds by Laser Cladding
3.3. Effect of Designing with Ternary SiC/BN/Ni Mixtures on Hardness Yields
3.4. The Analysis of Variance of Laser-Coated BN/SiC/Ni Welds
3.5. Confirm Run and Their Optimization on the Hardness Properties
3.6. Analysis of ANFIS Model
3.7. The Predictor of Surface Response Using an ANFIS
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Suryanarayanan, R. Plasma Spraying: Theory and Applications; World Scientific: Singapore, 1993. [Google Scholar]
- Sun, G.; Zhou, R.; Lu, J.; Mazumder, J. Evaluation of defect density, microstructure, residual stress, elastic modulus, hardness and strength of laser-deposited AISI 4340 steel. Acta Mater. 2015, 84, 172–189. [Google Scholar] [CrossRef]
- Wang, W.-L.; Bi, J.-Q.; Wang, S.-R.; Sun, K.-N.; Du, M.; Long, N.-N.; Bai, Y.-J. Microstructure and mechanical properties of alumina ceramics reinforced by boron nitride nanotubes. J. Eur. Ceram. Soc. 2011, 31, 2277–2284. [Google Scholar] [CrossRef]
- Li, X.C.; Stampfl, J.; Prinz, F.B. Mechanical and thermal expansion behavior of laser deposited metal matrix composites of Invar and TiC. Mater. Sci. Eng. A Struct. 2000, 282, 86–90. [Google Scholar] [CrossRef]
- Babout, L.; Brechet, Y.; Maire, E.; Fougeres, R. On the competition between particle fracture and particle decohesion in metal matrix composites. Acta Mater. 2004, 52, 4517–4525. [Google Scholar] [CrossRef]
- Shu, D.; Li, Z.; Zhang, K.; Yao, C.; Li, D.; Dai, Z. In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding. Mater. Lett. 2017, 195, 178–181. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, J.; Gu, Z.; Tantai, F.; Tian, H.; Han, J.; Fang, Y. Effect of WC-12Co content on wear and electrochemical corrosion properties of Ni-Cu/WC-12Co composite coatings deposited by laser cladding. Surf. Coat. Technol. 2020, 393, 125807. [Google Scholar] [CrossRef]
- Song, C.; Liu, X.; Ye, F.; Liu, Y.; Cheng, L. Mechanical and dielectric properties of SiCf/BN/SiBCN composites via different synthesis technologies. J. Eur. Ceram. Soc. 2019, 39, 4417–4423. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, Y.; Zhao, M.; Wang, N.; Wang, C.; He, S.; Ye, F.; Cheng, L. Effects of oxidation temperature on microstructure and EMI shielding performance of layered SiC/PyC porous ceramics. J. Eur. Ceram. Soc. 2019, 39, 4527–4534. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Hagino, H. Effects of the ambient oxygen concentration on WC-12Co cermet coatings fabricated by laser cladding. Opt. Laser Technol. 2021, 139, 106922. [Google Scholar] [CrossRef]
- Cao, Q.; Fan, L.; Chen, H.; Hou, Y.; Dong, L.; Ni, Z. Wear behavior of laser cladded WC-reinforced Ni-based coatings under low temperature. Tribol. Int. 2022, 176, 107939. [Google Scholar] [CrossRef]
- Zishan, C.; Hejun, L.; Qiangang, F.; Xinfa, Q. Tribological behaviors of SiC/h-BN composite coating at elevated temperatures. Tribol. Int. 2012, 56, 58–65. [Google Scholar] [CrossRef]
- Contin, A.; de Vasconcelos, G.; Barquete, D.M.; Campos, R.A.; Trava-Airoldi, V.J.; Corat, E.J. Laser cladding of SiC multilayers for diamond deposition on steel substrates. Diam. Relat. Mater. 2016, 65, 105–114. [Google Scholar] [CrossRef]
- Zhuang, H.; Zhang, L.; Staedler, T.; Jiang, X. Nanoscale integration of SiC/SiO2 core-shellnanocables in diamond through a simultaneous hybrid structure fabrication. Appl. Phys. Lett. 2012, 100, 193102. [Google Scholar] [CrossRef]
- Kumar, A.; Das, A.K. Evolution of microstructure and mechanical properties of Co-SiC tungsten inert gas cladded coating on 304 stainless steel. Eng. Sci. Technol. Int. J. 2021, 24, 591–604. [Google Scholar] [CrossRef]
- AKumar; Ram, R.K.; Das, A.K. Mechanical characteristics of Ti-SiC metal matrix composite coating on AISI 304 steel by gas tungsten arc (GTA) coating process. Mater. Today Proc. 2019, 17, 111–117. [Google Scholar]
- Li, Q.; Song, G.; Zhang, Y.; Lei, T.; Chen, W. Microstructure and dry sliding wear behavior of laser clad Ni-based alloy coating with the addition of SiC. Wear 2003, 254, 222–229. [Google Scholar] [CrossRef]
- Buytoz, S. Microstructural properties of SiC based hardfacing on low alloy steel. Surf. Coat. Technol. 2006, 200, 3734–3742. [Google Scholar] [CrossRef]
- Kretz, F.; Gácsi, Z.; Kovács, J.; Pieczonka, T. The electroless deposition of nickel on SiC particles for aluminum matrix composites. Surf. Coat. Technol. 2004, 180–181, 575–579. [Google Scholar] [CrossRef]
- Chen, M.; Pan, L.; Xia, X.; Zhou, W.; Li, Y. Boron nitride (BN) and BN based multiple-layer interphase for SiCf/SiC composites: A review. Ceram. Int. 2022, 48 Pt A, 34107–34127. [Google Scholar] [CrossRef]
- Richter, J.; Harabas, K. Micro-abrasion investigations of conventional and experimental supercoarse WC-(Ni, Co, Mo) composites. Int. J. Refract. Met. Hard Mater. 2019, 83, 104986. [Google Scholar] [CrossRef]
- Das, A.K.; Shariff, S.M.; Choudhury, A.R. Effect of rare earth oxide (Y2O3) addition on alloyed layer synthesized on Ti-6Al-4V substrate with Ti+SiC+h-BN mixed precursor by laser surface engineering. Tribol. Int. 2016, 95, 35–43. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, Y.; Chai, N.; Qin, H.; Liu, X.; Ye, F.; Cheng, L.; Zhang, L. Effect of SiBCN content on the dielectric and EMW absorbing properties of SiBCN-Si3N4 composite ceramics. J. Eur. Ceram. Soc. 2018, 38, 1334–1340. [Google Scholar] [CrossRef]
- Mahdavi, S.; Akhlaghi, F. Effect of the SiC particle size on the dry sliding wear behavior of SiC and SiC-Gr-reinforced Al6061 composites. J. Mater. Sci. 2011, 46, 7883–7894. [Google Scholar] [CrossRef]
- Li, L.; Li, H.; Lin, H.; Zhuang, L.; Wang, S.; Feng, T.; Yao, X.; Fu, Q. Comparison of the oxidation behaviors of SiC coatings on C/C composites prepared by pack cementation and chemical vapor deposition. Surf. Coat. Technol. 2016, 302, 56–64. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Yin, X.; Feng, L.; Li, Q. Effect of chemical vapor infiltration of SiC on the mechanical and electromagnetic properties of Si3N4–SiC ceramic. Scr. Mater. 2010, 63, 657–660. [Google Scholar] [CrossRef]
- Li, Y.; Guo, L.; Song, Q.; Li, H.; Fu, Q.; Li, K.-Z. Oxidation pre-treatment and electrophoretic deposition of SiC nanowires to improve the thermal shock resistance of SiC coating for C/C composites. J. Alloys Compd. 2015, 636, 165–170. [Google Scholar] [CrossRef]
- Yin, S.; Jiang, Y.; Su, K.; Fang, X.; Wang, Y.; Li, Q.; Yang, J. Preparation, mechanical, dielectric and microwave absorption properties of hierarchical porous SiCnw-Si3N4 composite ceramics. J. Eur. Ceram. Soc. 2022, 42, 3820–3830. [Google Scholar] [CrossRef]
- Zhou, W.; Long, L.; Li, Y. Mechanical and electromagnetic wave absorption properties of Cf-Si3N4 ceramics with PyC/SiC interphases. J. Mater. Sci. Technol. 2019, 35, 2809–2813. [Google Scholar] [CrossRef]
- Mazumder, S.; Metselaar, H.S.C.; Sukiman, N.L.; Zulkifli, N.W.M. Friction and wear behavior of fluoride added Si3N4-SiC ceramic composites at elevated temperature. Ceram. Int. 2023, 49, 12787–12795. [Google Scholar] [CrossRef]
- Lusquiños, F.; Pou, J.; Quintero, F.; Pérez-Amor, M. Laser cladding of SiC/Si composite coating on Si-SiC ceramic substrates. Surf. Coat. Technol. 2008, 202, 1588–1593. [Google Scholar] [CrossRef]
- Zheng, B.J.; Chen, X.M.; Lian, J.S. Microstructure and wear property of laser cladding Al+SiC powders on AZ91D magnesium alloy. Opt. Lasers Eng. 2010, 48, 526–532. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, J.; Pan, W.; Wang, W.; Tang, C. A review on the preparation and application of BN composite coatings. Ceram. Int. 2023, 49, 24–39. [Google Scholar] [CrossRef]
- Li, N.; Xiong, Y.; Xiong, H.; Shi, G.; Blackburn, J.; Liu, W.; Qin, R. Microstructure, formation mechanism and property characterization of Ti+SiC laser cladded coatings on Ti6Al4V alloy. Mater. Charact. 2019, 148, 43–51. [Google Scholar] [CrossRef]
- Majumdar, J.D.; Chandra, B.R.; Nath, A.K.; Manna, I. Laser composite surfacing of stainless steel with SiC. Phys. Stat. Sol. (A) 2006, 203, 2260–2265. [Google Scholar] [CrossRef]
- Lee, S.; Shin, Y.; Bae, D.; Min, B.; Park, J.; Kohyama, A. Fabrication of liquid phase sintered SiC materials and their characterization. Fusion Eng. Des. 2006, 81, 963–967. [Google Scholar] [CrossRef]
- Rebillat, F.; Lamon, J.; Guette, A. The concept of a strong interface applied to SiC/SiC composites with a BN interphase. Acta Mater. 2000, 48, 4609–4618. [Google Scholar] [CrossRef]
- Eichler, J.; Lesniak, C. Boron nitride (BN) and BN composites for high-temperature applications. J. Eur. Ceram. Soc. 2008, 28, 1105–1109. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy logica personal perspective. Fuzzy Sets Syst. 2015, 281, 4–20. [Google Scholar] [CrossRef]
- Lee, J.; Um, K. A comparison in a back-bead prediction of gas metal arc welding using multiple regression analysis and artificial neural network. Opt. Lasers Eng. 2000, 34, 149–158. [Google Scholar] [CrossRef]
- Pal, S.; Pal, S.K.; Samantaray, A.K. Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals. J. Mater. Process. Technol. 2008, 202, 464–474. [Google Scholar] [CrossRef]
- Nagesh, D.S.; Datta, G.L. Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks. J. Mater. Process. Technol. 2002, 123, 303–312. [Google Scholar] [CrossRef]
- Wang, C.-R.; Zhong, Z.-Q.; Jean, M.-D. Effect of ingredients proportions on mechanical properties in laser coated WC-blend welds. Phys. Scr. 2024, 99, 035945. [Google Scholar] [CrossRef]
- Contuzzi, N.; Casalino, G. On modelling Nd:Yag nanosecond laser milling process by neural network and multi response prediction methods. Opt.-Int. J. Light Electron Opt. 2023, 284, 170937. [Google Scholar] [CrossRef]
- Liu, M.; Duan, C.; Li, G.; Cai, Y.; Wang, F.; Li, L. Multi-response optimization of Ni-based laser cladding via principal component analysis and grey relational analysis. Opt.-Int. J. Light Electron Opt. 2023, 287, 171122. [Google Scholar] [CrossRef]
- Liu, J.C.; Ni, L.B. Prediction of laser clad parameters based on neural network. Mater. Technol. Adv. Perform. Mater. 2012, 27, 11–14. [Google Scholar] [CrossRef]
- Zhou, Z.; Du, Y.; He, G.; Xu, L.; Shu, L. Optimization and Characterization of Laser Cladding of 15-5PH Coating on 20Cr13 Stainless Steel. J. Mater. Eng. Perform. 2023, 32, 962–977. [Google Scholar] [CrossRef]
- Gao, J.; Wang, C.; Hao, Y.; Liang, X.; Zhao, K. Prediction of TC11 single-track geometry in laser metal deposition based on back propagation neural network and random forest. J. Mech. Sci. Technol. 2022, 36, 1417–1425. [Google Scholar] [CrossRef]
- Chen, L.; Yu, T.; Chen, X.; Zhao, Y.; Guan, C. Process optimization, microstructure and microhardness of coaxial laser cladding TiC reinforced Ni-based composite coatings. Opt. Laser Technol. 2022, 152, 108129. [Google Scholar] [CrossRef]
- Saeedi, R.; Razavi, R.S.; Bakhshi, S.R.; Erfanmanesh, M.; Bani, A.A. Optimization and characterization of laser cladding of NiCr and NiCr-TiC composite coatings on AISI 420 stainless steel. Ceram. Int. 2021, 47, 4097–4110. [Google Scholar] [CrossRef]
- Fang, J.-X.; Wang, J.-X.; Wang, Y.-J.; He, H.-T.; Zhang, D.-B.; Cao, Y. Microstructure evolution and deformation behavior during stretching of a compositionally inhomogeneous TWIP-TRIP cantor-like alloy by laser powder deposition. Mater. Sci. Eng. A 2022, 847, 143319. [Google Scholar] [CrossRef]
- Jiang, X.-J.; Bao, S.-J.; Zhang, L.-W.; Zhang, X.-Y.; Jiao, L.-S.; Qi, H.-B.; Wang, F. Effect of Zr on microstructure and properties of TC4 alloy fabricated by laser additive manufacturing. J. Mater. Res. Technol. 2023, 24, 8782–8792. [Google Scholar] [CrossRef]
- Jang, J.S.R. ANFIS: Adaptive-Network–Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Fu, L.-L.; Yang, J.-S.; Li, S.; Luo, H.; Wu, J.-H. Artificial neural network-based damage detection of composite material using laser ultrasonic technology. Measurement 2023, 220, 113435. [Google Scholar] [CrossRef]
- Mahmood, M.A.; Popescu, A.C.; Oane, M. Bridging the analytical and artificial neural network models for keyhole formation with experimental verification in laser melting deposition: A novel approach. Results Phys. 2021, 26, 104440. [Google Scholar] [CrossRef]
- Andersen, K.; Cook, G.E.; Karsai, G.; Ramaswamy, K. Artificial neural network applied to arc welding process modeling and control. IEEE Trans Ind. Appl. 1990, 26, 824–830. [Google Scholar] [CrossRef]
- Chowdhury, S.; Anand, S. Artificial neural network based geometric compensation for thermal deformation in additive manufacturing processes. In Proceedings of the International Manufacturing Science and Engineering Conference, Blacksburg, VA, USA, 27 June 2016. [Google Scholar]
- Sudnik, W.; Radaj, D.; Erofeew, W. Computerized simulation of laser beam welding, modelling and verification. J. Phys. D Appl. Phys. 1996, 29, 2811–2817. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Sun, Y.; Cheng, W. Surface quality optimization of laser cladding based on surface response and genetic neural network model. Surf. Topogr. Metrol. Prop. 2022, 10, 044007. [Google Scholar] [CrossRef]
- Genna, S.; Menna, E.; Rubino, G.; Trovalusci, F. Laser machining of silicon carbide: Experimental analysis and multiobjective optimization. Ceram. Int. 2023, 49, 10682–10691. [Google Scholar] [CrossRef]
Symbol | Controllable Factors | Level 1 | Level 2 | Level 3 |
---|---|---|---|---|
A | Base metal | 40Cr steel | #45 steel | - |
B | BN (wt%) | 0 | 15 | 30 |
C | SiC (wt%) | 100 | 85 | 70 |
D | Ni (wt%) | 0 | 15 | 30 |
E | Power of laser (W) | 2400 | 2600 | 2800 |
F | Carrier gas (mL/min) | 1400 | 1600 | 1800 |
G | Travel speed (mm/s) | 2 | 4 | 6 |
H | Stand-off distance (mm) | 40 | 45 | 50 |
EXP | A | B | C | D | E | F | G | H | Microhardness (HV) | S/N Ratio (dB) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H1 | H2 | H3 | Mean | St.Dev | ||||||||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 423 | 442 | 440 | 434.9 | 8.5 | 52.77 |
2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 437 | 434 | 472 | 447.6 | 17.2 | 53.02 |
3 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 478 | 479 | 500 | 485.7 | 10.2 | 53.73 |
4 | 1 | 2 | 1 | 1 | 2 | 2 | 3 | 3 | 367 | 386 | 377 | 376.8 | 7.8 | 51.52 |
5 | 1 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 431 | 453 | 443 | 442.3 | 9.0 | 52.91 |
6 | 1 | 2 | 3 | 3 | 1 | 1 | 2 | 2 | 596 | 589 | 626 | 603.5 | 15.8 | 55.61 |
7 | 1 | 3 | 1 | 2 | 1 | 3 | 2 | 3 | 484 | 499 | 488 | 490.4 | 6.3 | 53.81 |
8 | 1 | 3 | 2 | 3 | 2 | 1 | 3 | 1 | 412 | 432 | 424 | 422.5 | 8.2 | 52.52 |
9 | 1 | 3 | 3 | 1 | 3 | 2 | 1 | 2 | 712 | 698 | 754 | 721.2 | 23.6 | 57.16 |
10 | 2 | 1 | 1 | 3 | 3 | 2 | 2 | 1 | 353 | 376 | 380 | 369.7 | 11.9 | 51.36 |
11 | 2 | 1 | 2 | 1 | 1 | 3 | 3 | 2 | 412 | 443 | 442 | 432.4 | 14.4 | 52.72 |
12 | 2 | 1 | 3 | 2 | 2 | 1 | 1 | 3 | 578 | 602 | 609 | 596.4 | 13.3 | 55.51 |
13 | 2 | 2 | 1 | 2 | 3 | 1 | 3 | 2 | 345 | 376 | 348 | 356.4 | 13.9 | 51.04 |
14 | 2 | 2 | 2 | 3 | 1 | 2 | 1 | 3 | 712 | 756 | 796 | 754.6 | 34.2 | 57.55 |
15 | 2 | 2 | 3 | 1 | 2 | 3 | 2 | 1 | 567 | 586 | 575 | 575.9 | 7.8 | 55.21 |
16 | 2 | 3 | 1 | 3 | 2 | 3 | 1 | 2 | 375 | 396 | 382 | 384.4 | 8.7 | 51.70 |
17 | 2 | 3 | 2 | 1 | 3 | 1 | 2 | 3 | 479 | 470 | 528 | 492.3 | 25.4 | 53.84 |
18 | 2 | 3 | 3 | 2 | 1 | 2 | 3 | 1 | 493 | 512 | 529 | 511.4 | 14.7 | 54.18 |
No. of Trials | Atomic Concentration (%) | ||||
---|---|---|---|---|---|
C | O | Si | Fe | Ni | |
Trial 4 | 5.509 | 11.820 | 0.539 | 81.580 | 0.551 |
Trial 9 | 2.051 | 24.967 | 0.383 | 69.031 | 3.568 |
Trial 13 | 2.746 | 3.845 | 0.342 | 92.651 | 0.337 |
Trial14 | 2.564 | 5.259 | 0.516 | 90.611 | 1.050 |
A | B | C | D | E | F | G | H | |
---|---|---|---|---|---|---|---|---|
Level 1 | 53.67 | 53.18 | 52.03 | 53.87 | 54.44 | 53.55 | 54.60 | 53.16 |
Level 2 | 53.68 | 53.98 | 53.76 | 53.41 | 53.24 | 54.13 | 53.81 | 53.54 |
Level 3 | 0.00 | 53.87 | 55.23 | 53.74 | 53.34 | 53.35 | 52.62 | 54.33 |
Effect | 0.01 | 0.79 | 3.20 | 0.46 | 1.19 | 0.79 | 1.98 | 1.17 |
Rank | 8 | 5 | 1 | 7 | 3 | 6 | 2 | 4 |
Control Factors | Sum of Squares | Degrees of Freedom | Mean Square | Test Ratio | Contribution |
---|---|---|---|---|---|
A | 0.00013 | 1.0 | 0.00013 | 0.00006 | 0.00 |
B | 2.214 | 2.0 | 1.107 | 0.469 | 3.57 |
C | 30.794 | 2.0 | 15.397 | 6.528 | 49.71 |
D | 0.674 | 2.0 | 0.337 | 0.143 | 1.09 |
E | 5.291 | 2.0 | 2.646 | 1.122 | 8.54 |
F | 1.996 | 2.0 | 0.998 | 0.423 | 3.22 |
G | 11.973 | 2.0 | 5.987 | 2.538 | 19.33 |
H | 4.284 | 2.0 | 2.142 | 0.908 | 6.92 |
Error | 4.717 | 2.0 | 2.359 | 1.000 | 7.62 |
Total | 61.944 | 17.0 | 3.644 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Z.; Chen, J.; Jean, M.-D. Predictive Modelling and Optimization of the Mechanical Properties of Laser-Coated NB/SiC/Ni Welds Using an ANFIS. Metals 2024, 14, 585. https://doi.org/10.3390/met14050585
Zou Z, Chen J, Jean M-D. Predictive Modelling and Optimization of the Mechanical Properties of Laser-Coated NB/SiC/Ni Welds Using an ANFIS. Metals. 2024; 14(5):585. https://doi.org/10.3390/met14050585
Chicago/Turabian StyleZou, Zhe, Juan Chen, and Ming-Der Jean. 2024. "Predictive Modelling and Optimization of the Mechanical Properties of Laser-Coated NB/SiC/Ni Welds Using an ANFIS" Metals 14, no. 5: 585. https://doi.org/10.3390/met14050585
APA StyleZou, Z., Chen, J., & Jean, M. -D. (2024). Predictive Modelling and Optimization of the Mechanical Properties of Laser-Coated NB/SiC/Ni Welds Using an ANFIS. Metals, 14(5), 585. https://doi.org/10.3390/met14050585