Hydrostatic Equation of State of bcc Bi by Directly Solving the Partition Function
Abstract
1. Introduction
2. Calculation Method
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yaoita, K.; Tsuji, K.; Katayama, Y.; Imai, M.; Chen, J.-Q.; Kikegawa, T.; Shimomura, O. The structure of liquid bismuth under pressure. J. Non-Cryst. Solids 1992, 150, 25–28. [Google Scholar] [CrossRef]
- McMahon, M.I.; Degtyareva, O.; Nelmes, R.J. Ba-IV-type incommensurate crystal structure in group-V metals. Phys. Rev. Lett. 2000, 85, 4896–4899. [Google Scholar] [CrossRef] [PubMed]
- Duff, R.E.; Minshall, F.S. Investigation of a Shock-Induced Transition in Bismuth. Phys. Rev. 1957, 108, 1207–1212. [Google Scholar] [CrossRef]
- Aoki, K.; Fujiwara, S.; Kusakabe, M. Stability of the bcc structure of bismuth at high pressure. J. Phys. Soc. Jpn. 1982, 51, 3826–3830. [Google Scholar] [CrossRef]
- Degtyareva, O.; McMahon, M.I.; Nelmes, R.J. High-pressure structural studies of group-15 elements. High Press. Res. 2004, 24, 319–356. [Google Scholar] [CrossRef]
- Ono, S. High-pressure phase transition of bismuth. High Press. Res. 2018, 38, 414–421. [Google Scholar] [CrossRef]
- Husband, R.J.; O’Bannon, E.F.; Liermann, H.-P.; Lipp, M.J.; Méndez, A.S.J.; Konôpková, Z.; McBride, E.E.; Evans, W.J.; Jenei, Z. Compression-rate dependence of pressure-induced phase transitions in Bi. Sci. Rep. 2021, 11, 14859. [Google Scholar] [CrossRef] [PubMed]
- Storm, C.V.; McHardy, J.D.; Duff, M.J.; MacLeod, S.G.; O’Bannon, E.F., III; McMahon, M.I. The stress state in bismuth to 298 GPa and its use as a pressure transmitting medium and pressure marker at multi-megabar pressures. J. Appl. Phys. 2023, 133, 245904. [Google Scholar] [CrossRef]
- Campbell, D.J.; Sneed, D.T.; O’Bannon, E.F.; Söderlind, P.; Jenei, Z. Refined room-temperature equation of state of Bi up to 260 GPa. Phys. Rev. B 2023, 107, 224104. [Google Scholar] [CrossRef]
- Akahama, Y.; Kawamura, H.; Singh, A.K. Equation of state of bismuth to 222 GPa and comparison of gold and platinum pressure scales to 145 GPa. J. Appl. Phys. 2002, 92, 5892–5897. [Google Scholar] [CrossRef]
- Liu, L.; Song, H.X.; Geng, H.Y.; Bi, Y.; Xu, J.-a.; Li, X.; Li, Y.; Liu, J. Compressive behaviors of bcc bismuth up to 55 GPa. Phys. Status. Solidi. 2013, 250, 1398–1403. [Google Scholar] [CrossRef]
- Katahara, K.W.; Manghnani, M.H.; Fisher, E.S. Pressure derivatives of the elastic moduli of niobium and tantalum. J. Appl. Phys. 1976, 47, 434–439. [Google Scholar] [CrossRef]
- Holzapfel, W.B.; Hartwig, M.; Sievers, W. Equations of state for Cu, Ag, and Au for wide ranges in temperature and pressure up to 500 GPa and above. J. Phys. Chem. Ref. Data 2001, 30, 515–529. [Google Scholar] [CrossRef]
- Qi, X.; Cai, N.; Wang, S.; Li, B. Thermoelastic properties of tungsten at simultaneous high pressure and temperature. J. Appl. Phys. 2020, 128, 105105. [Google Scholar] [CrossRef]
- Jamieson, J.; Fritz, J.N.; Manghanani, M.H. Pressure measurement at high temperature in x-ray diffraction studies: Gold as a primary standard, in High-Pressure Research in Geophysics. Adv. Earth Planet. Sci. 1980, 12, 27. [Google Scholar]
- Holmes, N.C.; Moriarty, J.A.; Gathers, G.R.; Nellis, W.J. The equation of state of platinum to 660 GPa (6.6 Mbar). J. Appl. Phys. 1989, 66, 2962–2967. [Google Scholar] [CrossRef]
- Dewaele, A.; Datchi, F.; Loubeyre, P.; Mezouar, M. High pressure-high temperature equations of state of neon and diamond. Phys. Rev. B 2008, 77, 094106. [Google Scholar] [CrossRef]
- Vinet, P.; Ferrante, J.; Rose, J.H.; Smith, J.R. Compressibility of solids. J. Geophys. Res. Solid Earth 1987, 92, 9319–9325. [Google Scholar] [CrossRef]
- Vinet, P.; Ferrante, J.; Smith, J.R.; Rose, J.H. A universal equation of state for solids. J. Phys. C Solid State Phys. 1986, 19, L467. [Google Scholar] [CrossRef]
- Birch, F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. J. Geophys. Res. Solid Earth 1978, 83, 1257–1268. [Google Scholar] [CrossRef]
- Murnaghan, F.D. Finite deformations of an elastic solid. Am. J. Math. 1937, 59, 235–260. [Google Scholar] [CrossRef]
- Holzapfel, W.B. Equations of state for solids under strong compression. High Press. Res. 1998, 16, 81–126. [Google Scholar] [CrossRef]
- Holzapfel, W.B. Physics of solids under strong compression. Rep. Prog. Phys. 1996, 59, 29. [Google Scholar] [CrossRef]
- Gaurav, S.; Sharma, B.S.; Sharma, S.B.; Upadhyaya, S.C. Analysis of equations of state for solids under high compressions. Physica B 2002, 322, 328–339. [Google Scholar] [CrossRef]
- Burakovsky, L.; Burakovsky, N.; Cawkwell, M.J.; Preston, D.L.; Errandonea, D.; Simak, S.I. Ab initio phase diagram of iridium. Phys. Rev. B 2016, 94, 094112. [Google Scholar] [CrossRef]
- Gutiérrez, G.; Menéndez-Proupin, E.; Singh, A.K. Elastic properties of the bcc structure of bismuth at high pressure. J. Appl. Phys. 2006, 99, 103504. [Google Scholar] [CrossRef]
- Ning, B.-Y.; Gong, L.-C.; Weng, T.-C.; Ning, X.-J. Efficient approaches to solutions of partition function for condensed matters. J. Phys. Condens. Matter 2021, 33, 115901. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Shi, L.-Q.; Wang, N.; Zhang, H.-F.; Peng, S.-M. Equation of state of Iridium: From insight of ensemble theory. J. Phys. Condens. Matter 2022, 34, 465702. [Google Scholar] [CrossRef]
- Gong, L.-C.; Ning, B.-Y.; Weng, T.-C.; Ning, X.-J. Comparison of Two Efficient Methods for Calculating Partition Functions. Entropy 2019, 21, 1050. [Google Scholar] [CrossRef]
- Liu, Y.-P.; Ning, B.-Y.; Gong, L.-C.; Weng, T.-C.; Ning, X.-J. A New Model to Predict Optimum Conditions for Growth of 2D Materials on a Substrate. Nanomaterials 2019, 9, 978. [Google Scholar] [CrossRef]
- Ning, B.-Y.; Ning, X.-J. Pressure-induced structural phase transition of vanadium: A revisit from the perspective of ensemble theory. J. Phys. Condens. Matter 2022, 34, 425404. [Google Scholar] [CrossRef] [PubMed]
- Ning, B.-Y. Pressure-induced structural phase transitions of zirconium: An ab initio study based on statistical ensemble theory. J. Phys. Condens. Matter 2022, 34, 505402. [Google Scholar] [CrossRef] [PubMed]
- Ning, B.-Y.; Zhang, L.-Y. An ab initio study of structural phase transitions of crystalline aluminium under ultrahigh pressures based on ensemble theory. Comput. Mater. Sci. 2023, 218, 111960. [Google Scholar] [CrossRef]
- Tian, Y.-Y.; Ning, B.-Y.; Zhang, H.-F.; Ning, X.-J. Equation of state for tungsten obtained by direct solving the partition function. J. Appl. Phys. 2024, 135, 015102. [Google Scholar] [CrossRef]
- Dierckx, P. An algorithm for smoothing, differentiation and integration of experimental data using spline functions. J. Comput. Appl. Math. 1975, 1, 165–184. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Xiang, S.-K.; Yan, X.-Z.; Zheng, L.-R.; Zhang, Y.; Liu, S.-G.; Bi, Y. Phase transition of solid bismuth under high pressure. Chin. Phys. B 2016, 25, 108103. [Google Scholar] [CrossRef]
- Fan, X.; Xiang, S.; Cai, L. Temperature dependence of bismuth structures under high pressure. Chin. Phys. B 2022, 31, 056101. [Google Scholar] [CrossRef]
- Munoz, F.; Vergniory, M.G.; Rauch, T.; Henk, J.; Chulkov, E.V.; Mertig, I.; Botti, S.; Marques, M.A.L.; Romero, A.H. Topological Crystalline Insulator in a New Bi Semiconducting Phase. Sci. Rep. 2016, 6, 21790. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.R.Q.; Rivelino, R.; de Brito Mota, F.; de Castilho, C.M.C.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. Topological Insulating Phases in Two-Dimensional Bismuth-Containing Single Layers Preserved by Hydrogenation. J. Phys. Chem. C 2015, 119, 23599–23606. [Google Scholar] [CrossRef]
- Mukherjee, D.; Sahoo, B.D.; Joshi, K.D.; Gupta, S.C. On equation of state, elastic, and lattice dynamic stability of bcc bismuth under high pressure: Ab-initio calculations. J. Appl. Phys. 2014, 115, 053702. [Google Scholar] [CrossRef]
- Xiang, S.; Xi, F.; Bi, Y.; Xu, J.a.; Geng, H.; Cai, L.; Jing, F.; Liu, J. Ab initio thermodynamics beyond the quasiharmonic approximation: W as a prototype. Phys. Rev. B 2010, 81, 014301. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, D.; Zhang, X. Calculated Equation of State of Al, Cu, Ta, Mo, and W to 1000 GPa. Phys. Rev. Lett. 2000, 84, 3220–3223. [Google Scholar] [CrossRef] [PubMed]
- Burakovsky, L.; Burakovsky, N.; Preston, D.; Simak, S. Systematics of the Third Row Transition Metal Melting: The HCP Metals Rhenium and Osmium. Crystals 2018, 8, 243. [Google Scholar] [CrossRef]
- Fratanduono, D.E.; Millot, M.; Braun, D.G.; Ali, S.J.; Fernandez-Pañella, A.; Seagle, C.T.; Davis, J.-P.; Brown, J.L.; Akahama, Y.; Kraus, R.G.; et al. Establishing gold and platinum standards to 1 terapascal using shockless compression. Science 2021, 372, 1063–1068. [Google Scholar] [CrossRef]
- Fratanduono, D.E.; Smith, R.F.; Ali, S.J.; Braun, D.G.; Fernandez-Pañella, A.; Zhang, S.; Kraus, R.G.; Coppari, F.; McNaney, J.M.; Marshall, M.C.; et al. Probing the solid phase of noble metal copper at terapascal conditions. Phys. Rev. Lett. 2020, 124, 015701. [Google Scholar] [CrossRef]
- Jin, K.; Wu, Q.; Geng, H.; Li, X.; Cai, L.; Zhou, X. Pressure-volume-temperature equations of state of Au and Pt up to 300 GPa and 3000 K: Internally consistent pressure scales. High Press. Res. 2011, 31, 560–580. [Google Scholar] [CrossRef]
- Dewaele, A.; Loubeyre, P.; Mezouar, M. Equations of state of six metals above 94 GPa. Phys. Rev. B 2004, 70, 094112. [Google Scholar] [CrossRef]
- Dorogokupets, P.I.; Oganov, A.R. Ruby, metals, and MgO as alternative pressure scales: A semiempirical description of shock-wave, ultrasonic, X-ray, and thermochemical data at high temperatures and pressures. Phys. Rev. B 2007, 75, 024115. [Google Scholar] [CrossRef]
- Sokolova, T.S.; Dorogokupets, P.I.; Litasov, K.D. Self-consistent pressure scales based on the equations of state for ruby, diamond, MgO, B2-NaCl, as well as Au, Pt, and other metals to 4 Mbar and 3000 K. Russ. Geol. Geophys. 2013, 54, 181–199. [Google Scholar] [CrossRef]
- Gong, L.-C.; Ning, B.-Y.; Ming, C.; Weng, T.-C.; Ning, X.-J. How accurate for phonon models to predict the thermodynamics properties of crystals. J. Phys. Condens. Matter 2021, 33, 085901. [Google Scholar] [CrossRef]
P | V |
---|---|
7.7 | 1.0000 |
10 | 0.9728 |
20 | 0.8891 |
30 | 0.8311 |
40 | 0.7890 |
50 | 0.7545 |
60 | 0.7265 |
70 | 0.7026 |
80 | 0.6819 |
90 | 0.6637 |
100 | 0.6474 |
110 | 0.6328 |
120 | 0.6197 |
130 | 0.6077 |
140 | 0.5965 |
150 | 0.5862 |
160 | 0.5766 |
170 | 0.5677 |
180 | 0.5593 |
190 | 0.5515 |
200 | 0.5441 |
210 | 0.5370 |
220 | 0.5303 |
230 | 0.5240 |
240 | 0.5180 |
250 | 0.5122 |
260 | 0.5068 |
270 | 0.5015 |
280 | 0.4965 |
290 | 0.4916 |
300 | 0.4870 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.-Y.; Ning, B.-Y.; Zhang, H.-F.; Ning, X.-J. Hydrostatic Equation of State of bcc Bi by Directly Solving the Partition Function. Metals 2024, 14, 601. https://doi.org/10.3390/met14050601
Tian Y-Y, Ning B-Y, Zhang H-F, Ning X-J. Hydrostatic Equation of State of bcc Bi by Directly Solving the Partition Function. Metals. 2024; 14(5):601. https://doi.org/10.3390/met14050601
Chicago/Turabian StyleTian, Yue-Yue, Bo-Yuan Ning, Hui-Fen Zhang, and Xi-Jing Ning. 2024. "Hydrostatic Equation of State of bcc Bi by Directly Solving the Partition Function" Metals 14, no. 5: 601. https://doi.org/10.3390/met14050601
APA StyleTian, Y.-Y., Ning, B.-Y., Zhang, H.-F., & Ning, X.-J. (2024). Hydrostatic Equation of State of bcc Bi by Directly Solving the Partition Function. Metals, 14(5), 601. https://doi.org/10.3390/met14050601