Microstructure Dependence of Magnetic Properties for Al1.5Fe3Co3Cr1 Multi-Principal-Element Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure of Al1.5Fe3Co3Cr1 MPEA in Different States
3.2. Soft-Magnetic Properties of Al1.5Fe3Co3Cr1 MPEA in Different States
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chau, K.T.; Li, W. Overview of electric machines for electric and hybrid vehicles. Int. J. Veh. Des. 2014, 64, 46–71. [Google Scholar] [CrossRef]
- Ongena, J.; Ogawa, Y. Nuclear fusion: Status report and future prospects. Energy Policy 2021, 96, 770–778. [Google Scholar] [CrossRef]
- Galea, M. High Performance, Direct Drive Machines for Aerospace Applications. Ph.D. Thesis, University of Nottingam, Nottingham, UK, 2013. [Google Scholar]
- Varga, L.K. Soft magnetic nanocomposites for high-frequency and high-temperature applications. J. Magn. Magn. Mater. 2007, 316, 442–447. [Google Scholar] [CrossRef]
- Barret, W.F.; Brown, W.; Hadffeld, R.A. Researches on the electrical conductivity and magnetic properties of upwards of one hundred different alloys of iron. J. Inst. Electr. Eng. 1902, 156, 674–722. [Google Scholar] [CrossRef]
- Gercsi, Z.; Mazaleyrat, F.; Varga, L.K. High-temperature soft magnetic properties of Co-doped nanocrystalline alloys. J. Magn. Magn. Mater. 2006, 302, 454–458. [Google Scholar] [CrossRef]
- Yu, W.; Hua, W.; Zhang, Z. High-frequency core loss analysis of high-speed flux-switching permanent magnet machines. Electronics 2021, 10, 1076. [Google Scholar] [CrossRef]
- Silveyra, J.M.; Xu, P.; Keylin, V.; DeGeorge, V.; Leary, A.; McHenry, M.E. Amorphous and nanocomposite materials for energy-efficient electric motors. J. Electron. Mater. 2016, 45, 219–225. [Google Scholar] [CrossRef]
- Clark, T.; Mathaudhu, S.N. Microstructure and magnetic properties of dilute nanocrystalline Fe-Si prepared by high energy ball milling. J. Magn. Magn. Mater. 2019, 484, 350–355. [Google Scholar] [CrossRef]
- Senda, K.; Namikawa, M.; Hayakawa, Y. Electrical steels for advanced automobiles-core materials for moters, generators and high-frequency reactors. JEF Tech. Rep. 2004, 4, 67–73. [Google Scholar]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N.; Wilks, J. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Gao, M.C.; Miracle, D.B.; Maurice, D.; Yan, X.; Zhang, Y.; Hawk, J.A. High-entropy functional materials. J. Mater. Res. 2018, 33, 3138–3155. [Google Scholar] [CrossRef]
- Wang, H.; He, Q.F.; Gao, X.; Shang, Y.H.; Zhu, W.Q.; Zhao, W.J.; Chen, Z.Q.; Gong, H.; Yang, Y. Multifunctional high entropy alloys enabled by severe lattice distortion. Adv. Mater. 2023, 2305453. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Chaudhary, V.; Chaudhary, R.; Banerjee, R.; Ramanujan, R. Accelerated and conventional development of magnetic high entropy alloys. Mater. Today 2021, 49, 231. [Google Scholar] [CrossRef]
- Gong, P.; Leong, Z.Y.; Qi, J.H.; Kwok, T.W.J.; Nutter, J.; Azakli, Y.; Zhou, L.; Palacin, R.; Davis, C.; Goodall, R.; et al. Composition and phase structure dependence of magnetic properties for Co2FeCr0.5Alx (x = 0.9, 1.2) multi principal component alloys. Acta Mater. 2023, 256, 119113. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.H.; Liu, X.L.; Li, H.X.; Zhang, E.; Bai, G.; Xu, H.; Liu, X.G.; Zhang, X.F. Strength, plasticity and coercivity tradeoff in soft magnetic high-entropy alloys by multiple coherent interfaces. Acta Mater. 2023, 254, 118970. [Google Scholar] [CrossRef]
- Chen, H.Y.; Gou, J.M.; Jia, W.T.; Song, X.; Ma, T.Y. Origin of hard magnetism in Fe-Co-Ni-Al-Ti-Cu high-entropy alloy: Chemical shape anisotropy. Acta Mater. 2023, 246, 118702. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.; Cheng, Y.; Liaw, P.K. High-entropy alloys with high saturation magnetization. Electric. Resist. Malleab. Sci. Rep. 2013, 3, 1455. [Google Scholar]
- Zhou, K.X.; Sun, B.R.; Liu, G.Y.; Li, X.W.; Xin, S.W.; Liaw, P.K.; Shen, T.D. FeCoNiAlSi high entropy alloys with exceptional fundamental and application-oriented magnetism. Intermetallics 2020, 122, 106801. [Google Scholar] [CrossRef]
- Han, L.L.; Maccari, F.; Filho, I.R.S.; Peter, N.J.; Wei, Y.; Gault, B.; Gutfleisch, O.; Li, Z.M.; Raabe, D. A mechanically strong and ductile soft magnet with ultralow coercivity. Nature 2022, 608, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Han, L.L.; Rao, Z.Y.; Filho, I.R.S.; Maccari, F.; Wei, Y.; Wu, G.; Ahmadian, A.; Zhou, X.Y.; Gutfleisch, O.; Ponge, D.; et al. Ultrastrong and ductile soft magnetic high-entropy alloys via coherent ordered nanoprecipitates. Adv. Mater. 2021, 33, 2102139. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, Q.; Zhou, X.Y.; Hao, J.M.; Gault, B.; Zhang, Q.Y.; Dong, C.; Nieh, T.G. A novel soft-magnetic B2-based multiprincipal-element alloy with a uniform distribution of coherent body-centered-cubic nanoprecipitates. Adv. Mater. 2021, 33, 2006723. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, Q.; Jiang, B.B.; Li, C.L.; Hao, J.M.; Li, X.N.; Dong, C.; Nieh, T.G. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions. Acta Mater. 2018, 147, 213–225. [Google Scholar] [CrossRef]
- Wang, Z.H.; Yuan, J.H.; Wang, Q.; Li, Z.; Zhou, X.Y.; Luan, J.H.; Wang, J.; Zheng, S.J.; Jiao, Z.B.; Dong, C.; et al. Developing novel high-temperature soft-magnetic B2-based multi-principal-element alloys with coherent body-centered-cubic nanoprecipitates. Acta Mater. 2024, 266, 119686. [Google Scholar] [CrossRef]
- Jung, C.W.; Kang, K.; Marshal, A.; Pradeep, K.G.; Seol, J.B.; Lee, H.M.; Choi, P.P. Effects of phase composition and elemental partitioning on soft magnetic properties of AlFeCoCrMn high entropy alloys. Acta Mater. 2019, 171, 31–39. [Google Scholar] [CrossRef]
- Cullity, D.B.; Stock, S.R. Elements of X-ray Diffraction, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 2001. [Google Scholar]
- Sosa, J.M.; Jensen, J.K.; Huber, D.E.; Viswanathan, G.B.; Gibson, M.A.; Fraser, H.L. Three-dimensional characterization of the microstructure of a high entropy alloy using STEM/HAADF tomograph. Mater. Sci. Technol. 2015, 31, 1250–1258. [Google Scholar] [CrossRef]
- Buchkov, K.; Galluzzi, A.; Nazarova, E.; Polichetti, M. Complex AC Magnetic Susceptibility as a Tool for Exploring Nonlinear Magnetic Phenomena and Pinning Properties in Superconductors. Materials 2023, 16, 4896. [Google Scholar] [CrossRef]
- Winkler, R.; Ciria, M.; Ahmad, M.; Plank, H.; Marcuello, C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in biological Systems and Future Directions for Quantum Technologies. Nanomaterials 2023, 13, 2585. [Google Scholar] [CrossRef]
Alloy | Composition (at. %) | Heat Treatment | Ms (emu/g) | Hc | |
---|---|---|---|---|---|
(Oe) | (A/m) | ||||
Al1.5Co3Fe3Cr1 | Al17.65Co35.29Fe35.29Cr11.76 | Homogenized at 1573 K | 127.0 | 1.8 | 143.3 |
773 K-aged for 24 h | 129.6 | 1.8 | 143.3 | ||
873 K-aged for 24 h | 127.8 | 1.9 | 151.2 | ||
873 K-aged for 480 h | 132.0 | 2.0 | 159.2 | ||
973 K-aged for 24 h | 129.2 | 3.4 | 270.6 | ||
973 K-aged for 480 h | 120.0 | 24.5 | 1950.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Qiao, Y.; Zhang, H.; Tu, D.; Wang, G.; Wang, Z.; Wang, Q. Microstructure Dependence of Magnetic Properties for Al1.5Fe3Co3Cr1 Multi-Principal-Element Alloy. Metals 2024, 14, 608. https://doi.org/10.3390/met14060608
Sun S, Qiao Y, Zhang H, Tu D, Wang G, Wang Z, Wang Q. Microstructure Dependence of Magnetic Properties for Al1.5Fe3Co3Cr1 Multi-Principal-Element Alloy. Metals. 2024; 14(6):608. https://doi.org/10.3390/met14060608
Chicago/Turabian StyleSun, Shaoheng, Yaxia Qiao, Hao Zhang, Dejun Tu, Guojun Wang, Zhenhua Wang, and Qing Wang. 2024. "Microstructure Dependence of Magnetic Properties for Al1.5Fe3Co3Cr1 Multi-Principal-Element Alloy" Metals 14, no. 6: 608. https://doi.org/10.3390/met14060608
APA StyleSun, S., Qiao, Y., Zhang, H., Tu, D., Wang, G., Wang, Z., & Wang, Q. (2024). Microstructure Dependence of Magnetic Properties for Al1.5Fe3Co3Cr1 Multi-Principal-Element Alloy. Metals, 14(6), 608. https://doi.org/10.3390/met14060608