Phase Mapping Using a Combination of Multi-Functional Scanning Electron Microscopy Detectors and Imaging Modes
Abstract
:1. Introduction
2. Materials and Experimental Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pedroso, A.F.V.; Sousa, V.F.C.; Sebbe, N.P.V.; Silva, F.J.G.; Campilho, R.D.S.G.; Sales-Contini, R.C.M.; Jesus, A.M.P. A Comprehensive Review on the Conventional and Non-Conventional Machining and Tool-Wear Mechanisms of INCONEL®. Metals 2023, 13, 585. [Google Scholar] [CrossRef]
- Liu, G.; Kong, L.; Xiao, X.; Birosca, S. Microstructure evolution and phase transformation in a nickel-based superalloy with varying Ti/Al ratios: Part 2—Phase transformation. Mater. Sci. Eng. A 2022, 831, 142228. [Google Scholar] [CrossRef]
- Sazerat, M.; Nait-Ali, A.; Cervellon, A.; Lopez-Galilea, I.; Burlot, G.; Gillet, S.; Eyidi, D.; Joulain, A.; Villechaise, P.; Weber, S.; et al. High temperature microstructure stability of Waspaloy produced by Wire Arc Additive Manufacturing. J. Alloys Compd. 2023, 966, 171626. [Google Scholar] [CrossRef]
- Chu, D.J.; Park, C.; Lee, J.; Jung, W.S. Effect of Ti/Al Ratio on Precipitation Behavior during Aging of Ni-Cr-Co-Based Superalloys. Metals 2023, 13, 1959. [Google Scholar] [CrossRef]
- Detrois, M.; Jablonski, P.D.; Hawk, J.A. The effect of η phase precipitates on the creep behavior of alloy 263 and variants. Mater. Sci. Eng. A 2021, 799, 140337. [Google Scholar] [CrossRef]
- Lvov, G.; Levit, V.I.; Kaufman, M.J. Mechanism of primary MC carbide decomposition in Ni-base superalloys. Metall. Mater. Trans. A 2004, 35, 1669–1679. [Google Scholar] [CrossRef]
- Ge, H.; Liu, G.; Zheng, S.; Yang, Y.; Liu, K.; Ma, X. Dislocation climbing dominated decomposition and fracture of carbides in a Ni-based superalloy. Acta Mater. 2023, 246, 118669. [Google Scholar] [CrossRef]
- Liu, G.; Xiao, X.; Véron, M.; Birosca, S. The nucleation and growth of η phase in nickel-based superalloy during long-term thermal exposure. Acta Mater. 2020, 185, 493–506. [Google Scholar] [CrossRef]
- Hou, K.; Ou, M.; Xing, W.; Ma, G.; Hao, X.; Wang, M.; Ma, Y. The formation of η-Ni3Ti phase microstructure in a cast nickel-based superalloy with high Ti/Al ratio. J. Mater. Res. Technol. 2024, 29, 764–778. [Google Scholar] [CrossRef]
- Choi, B.G.; Kim, I.S.; Kim, D.H.; Jo, C.Y. Temperature dependence of MC decomposition behavior in Ni-base superalloy GTD 111. Mater. Sci. Eng. A 2008, 478, 329–335. [Google Scholar] [CrossRef]
- BGeorgin, B.M.; Viswanathan, G.B.; Welk, B.A.; Kloenne, Z.T.; Fraser, H.L. Optimizing image contrast of second phases in metal alloys. Ultramicroscopy 2021, 228, 113346. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, Í.; Simões, S. Recent Advances in EBSD Characterization of Metals. Metals 2020, 10, 1097. [Google Scholar] [CrossRef]
- Sharma, J.; Nicolaÿ, A.; De Graef, M.; Bozzolo, N. Phase discrimination between δ and η phases in the new nickel-based superalloy VDM Alloy 780 using EBSD. Mater. Charact. 2021, 176, 111105. [Google Scholar] [CrossRef]
- Münch, B.; Martin, L.; Leemann, A. Segmentation of elemental EDS maps by means of multiple clustering combined with phase identification. J. Microsc. 2015, 260, 411–426. [Google Scholar] [CrossRef] [PubMed]
- Parish, C.M.; Brewer, L.N. Multivariate statistics applications in phase analysis of STEM-EDS spectrum images. Ultramicroscopy 2010, 110, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Rauch, E.; Véron, M. Automated crystal orientation and phase mapping in TEM. Mater. Charact. 2014, 98, 1–9. [Google Scholar] [CrossRef]
- Jiang, J.; Britton, T.B.; Wilkinson, A.J. Measurement of geometrically necessary dislocation density with high resolution electron backscatter diffraction: Effects of detector binning and step size. Ultramicroscopy 2013, 125, 1–9. [Google Scholar] [CrossRef] [PubMed]
Phase Mapping Methods | Advantages | Disadvantages | Note |
---|---|---|---|
Imaging with different detectors and modes | Relatively quick and accurate | Proposed herein | |
EBSD | High accuracy for large-size phases | High demand of sample surface; time consuming for scanning; limited resolution | Widely used for accurate phase mapping for bulk alloys [8] |
SEM-EDS | Time consuming for scanning; limited accuracy | Common method for auxiliary phase identification and mapping for bulk alloys | |
STEM-EDS | High accuracy | Difficulties in specimen preparation; time consuming for scanning; limited research areas | Common method for auxiliary phase identification and mapping for TEM foils |
TEM-PED | High accuracy | Difficulties in specimen preparation; time consuming for scanning, limited research areas | Widely used for accurate phase for TEM foils with nanometer resolution [9] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Zhao, Y.; Wang, S. Phase Mapping Using a Combination of Multi-Functional Scanning Electron Microscopy Detectors and Imaging Modes. Metals 2024, 14, 899. https://doi.org/10.3390/met14080899
Liu G, Zhao Y, Wang S. Phase Mapping Using a Combination of Multi-Functional Scanning Electron Microscopy Detectors and Imaging Modes. Metals. 2024; 14(8):899. https://doi.org/10.3390/met14080899
Chicago/Turabian StyleLiu, Gang, Yonghua Zhao, and Shuai Wang. 2024. "Phase Mapping Using a Combination of Multi-Functional Scanning Electron Microscopy Detectors and Imaging Modes" Metals 14, no. 8: 899. https://doi.org/10.3390/met14080899
APA StyleLiu, G., Zhao, Y., & Wang, S. (2024). Phase Mapping Using a Combination of Multi-Functional Scanning Electron Microscopy Detectors and Imaging Modes. Metals, 14(8), 899. https://doi.org/10.3390/met14080899