Advanced Simulation and Modeling Technologies of Metallurgical Processes—1st Edition
1. Introduction and Scope
2. Overview of the Published Articles
3. Summary and Outlook
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Song, J.; Xi, W.; Niu, L. Study on the Activity Model of PbO-ZnO-FeO-Fe2O3-SiO2-CaO Six-Component High-Lead Slag System. Metals 2023, 13, 734. https://doi.org/10.3390/met13040734.
- Collins, J.; Piemonte, M.; Taylor, M.; Fellowes, J.; Pickering, E. A Rapid, Open-Source CCT Predictor for Low-Alloy Steels, and Its Application to Compositionally Heterogeneous Material. Metals 2023, 13, 1168. https://doi.org/10.3390/met13071168.
- Sun, H.; Li, N.; Zhu, Y.; Liu, K. A Model for Direct Effect of Graphene on Mechanical Property of Al Matrix Composite. Metals 2023, 13, 1351. https://doi.org/10.3390/met13081351.
- Wu, J.; Jin, Y.; Gan, F.; Li, X.; Liu, Z.; Lin, P.; Huang, Z.; Ling, H. Digital Twin Design of a Turbulence Inhibitor in a Tundish Based on the Production Cluster Mining Algorithm. Metals 2023, 13, 1651. https://doi.org/10.3390/met13101651.
- Li, H.; Chen, J. An Analysis of Long-Process Ironmaking in a Reduction Smelting Furnace with Hydrogen-Enriched Conditions. Metals 2023, 13, 1756. https://doi.org/10.3390/met13101756.
- Liu, D.; Zhang, W.; Xue, Z.; Song, C.; Chen, L. Simulation and Validation of Thickness of Slag Crust on the Copper Stave in the High-Temperature Area of Blast Furnace. Metals 2024, 14, 19. https://doi.org/10.3390/met14010019.
- Khajezade, A.; Poole, W.J.; Greenwood, M.; Militzer, M. Large-Scale Multi-Phase-Field Simulation of 2D Subgrain Growth. Metals 2024, 14, 584. https://doi.org/10.3390/met14050584.
- Li, H.; Zhao, Y.; Guo, C.; Li, J. Analysis of Technological Pathways and Development Suggestions for Blast Furnace Low-Carbon Ironmaking. Metals 2024, 14, 1276. https://doi.org/10.3390/met14111276.
- Myrzakulov, M.K.; Dzhumankulova, S.K.; Yelemessov, K.K.; Barmenshinova, M.B.; Martyushev, N.V.; Skeeba, V.Y.; Kondratiev, V.V.; Karlina, A.I. Analysis of the Effect of Fluxing Additives in the Production of Titanium Slags in Laboratory Conditions. Metals 2024, 14, 1320. https://doi.org/10.3390/met14121320.
- Zhang, Z.; Shao, P.; Shi, S. Physical Simulation of Gas—Liquid Mass Transfer Behavior in Oxygen Bottom Blowing Copper Furnace. Metals 2024, 14, 1362. https://doi.org/10.3390/met14121362.
References
- Zhang, J.; Liu, Y.; Liu, Q. Metallurgical Process Simulation and Optimization. Materials 2022, 15, 8421. [Google Scholar] [CrossRef] [PubMed]
- Peters, B. Advanced Simulation Technologies of Metallurgical Processing. Metals 2020, 10, 829. [Google Scholar] [CrossRef]
- Mio, H.; Yamamoto, K.; Shimosaka, A.; Shirakawa, Y.; Hidaka, J. Modeling of Solid Particle Flow in Blast Furnace Considering Actual Operation by Large-scale Discrete Element Method. ISIJ Int. 2007, 47, 1745–1752. [Google Scholar] [CrossRef]
- Liu, L.; Kuang, S.; Guo, B.; Yu, A. Optimization of Ironmaking Blast Furnace Operations Using an Integrated Mathematical Model. Chem. Ing. Tech. 2023, 95, 219–233. [Google Scholar] [CrossRef]
- Dering, D.; Swartz, C.; Dogan, N. Dynamic Modeling and Simulation of Basic Oxygen Furnace (BOF) Operation. Processes 2020, 8, 483. [Google Scholar] [CrossRef]
- Li, M.; Wu, Z.; Li, L.; Zou, Z. Numerical simulation of Marangoni effect induced by species transfer across iron droplet–molten slag interface. J. Iron Steel Res. Int. 2023, 30, 1109–1116. [Google Scholar] [CrossRef]
- Li, M.; Yang, Y.; Yu, S.; Shao, L.; Zou, Z. A Numerical Study on Dehydrogenation of Liquid Steel Supersaturated With Hydrogen in a Vacuum Degasser (VD). Metall. Mater. Trans. B 2023, 54, 1819–1830. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, J. Advanced Simulation and Modeling Technologies of Metallurgical Processes—1st Edition. Metals 2025, 15, 22. https://doi.org/10.3390/met15010022
Li H, Li J. Advanced Simulation and Modeling Technologies of Metallurgical Processes—1st Edition. Metals. 2025; 15(1):22. https://doi.org/10.3390/met15010022
Chicago/Turabian StyleLi, Haifeng, and Junqi Li. 2025. "Advanced Simulation and Modeling Technologies of Metallurgical Processes—1st Edition" Metals 15, no. 1: 22. https://doi.org/10.3390/met15010022
APA StyleLi, H., & Li, J. (2025). Advanced Simulation and Modeling Technologies of Metallurgical Processes—1st Edition. Metals, 15(1), 22. https://doi.org/10.3390/met15010022